# | Document title | Authors | Year | Source | Cited by |
1 | Potent antitumor activity of synthetic 1,2-naphthoquinones and 1,4-naphthoquinones | Kongkathip N., Kongkathip B., Siripong P., Sangma C., Luangkamin S., Niyomdecha M., Pattanapa S., Piyaviriyagul S., Kongsaeree P. | 2003 | Bioorganic and Medicinal Chemistry 11(14),pp. 3179-3191 | 211 |
2 | An avian influenza H5N1 virus that binds to a human-type receptor | Auewarakul P., Suptawiwat O., Kongchanagul A., Sangma C., Suzuki Y., Ungchusak K., Louisirirotchanakul S., Lerdsamran H., Pooruk P., Thitithanyanont A., Pittayawonganon C., Guo C.T., Hiramatsu H., Jampangern W., Chunsutthiwat S., Puthavathana P. | 2007 | Journal of Virology 81(18),pp. 9950-9955 | 168 |
3 | A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor | Navakul K., Warakulwit C., Yenchitsomanus P., Panya A., Lieberzeit P., Sangma C. | 2017 | Nanomedicine: Nanotechnology, Biology, and Medicine 13(2),pp. 549-557 | 117 |
4 | Electrochemical Biosensor Based on Surface Imprinting for Zika Virus Detection in Serum | Tancharoen C., Sukjee W., Thepparit C., Jaimipuk T., Auewarakul P., Thitithanyanont A., Sangma C. | 2019 | ACS Sensors 4(1),pp. 69-75 | 105 |
5 | Competitive inhibition of the dengue virus NS3 serine protease by synthetic peptides representing polyprotein cleavage sites | Chanprapaph S., Saparpakorn P., Sangma C., Niyomrattanakit P., Hannongbua S., Angsuthanasombat C., Katzenmeier G. | 2005 | Biochemical and Biophysical Research Communications 330(4),pp. 1237-1246 | 86 |
6 | Influenza A virus molecularly imprinted polymers and their application in virus sub-type classification | Wangchareansak T., Wangchareansak T., Thitithanyanont A., Chuakheaw D., Gleeson M., Lieberzeit P., Sangma C. | 2013 | Journal of Materials Chemistry B 1(16),pp. 2190-2197 | 79 |
7 | Synthesis of novel rhinacanthins and related anticancer naphthoquinone esters | Kongkathip N., Luangkamin S., Kongkathip B., Sangma C., Grigg R., Kongsaeree P., Prabpai S., Pradidphol N., Piyaviriyagul S., Siripong P. | 2004 | Journal of Medicinal Chemistry 47(18),pp. 4427-4438 | 69 |
8 | A novel approach to identify molecular binding to the influenza virus H5N1: Screening using molecularly imprinted polymers (MIPs) | Wangchareansak T., Thitithanyanont A., Chuakheaw D., Gleeson M., Lieberzeit P., Sangma C. | 2014 | MedChemComm 5(5),pp. 617-621 | 38 |
9 | Self-assembled glucosamine monolayers as biomimetic receptors for detecting WGA lectin and influenza virus with a quartz crystal microbalance | Wangchareansak T., Wangchareansak T., Sangma C., Ngernmeesri P., Thitithanyanont A., Lieberzeit P. | 2013 | Analytical and Bioanalytical Chemistry 405(20),pp. 6471-6478 | 24 |
10 | Surface molecular imprints of WGA lectin as artificial receptors for mass-sensitive binding studies | Wangchareansak T., Wangchareansak T., Sangma C., Choowongkomon K., Dickert F., Lieberzeit P. | 2011 | Analytical and Bioanalytical Chemistry 400(8),pp. 2499-2506 | 23 |
11 | Virtual screening for anti-HIV-1 RT and anti-HIV-1 PR inhibitors from the Thai medicinal plants database: A combined docking with neural networks approach | Sangma C., Chuakheaw D., Jongkon N., Saenbandit K., Nunrium P., Uthayopas P., Hannongbua S. | 2005 | Combinatorial Chemistry and High Throughput Screening 8(5),pp. 417-429 | 21 |
12 | In silico screening of epidermal growth factor receptor (EGFR) in the tyrosine kinase domain through a medicinal plant compound database | Sawatdichaikul O., Hannongbua S., Sangma C., Wolschann P., Choowongkomon K. | 2012 | Journal of Molecular Modeling 18(3),pp. 1241-1254 | 20 |
13 | Hydrogel Based-Electrochemical Gas Sensor for Explosive Material Detection | Puttasakul T., Pintavirooj C., Sangma C., Sukjee W. | 2019 | IEEE Sensors Journal 19(19),pp. 8556-8562 | 20 |
14 | Virus MIP-composites for SARS-CoV-2 detection in the aquatic environment | Sukjee W., Thitithanyanont A., Manopwisedjaroen S., Seetaha S., Thepparit C., Sangma C. | 2022 | Materials Letters 315 | 20 |
15 | Structure and Dynamics of SARS Coronavirus Proteinase: The Primary Key to the Designing and Screening for Anti-SARS Drugs | Lee V.S., Lee V.S., Wittayanarakul K., Remsungnen T., Parasuk V., Sompornpisut P., Chantratita W., Sangma C., Vannarat S., Srichaikul P., Hannongbua S., Saparpakorn P., Treesuwan W., Aruksakulwong O., Pasomsub E., Promsri S., Chuakheaw D., Hannongbua S. | 2003 | ScienceAsia 29(2),pp. 181-188 | 20 |
16 | Selectivity enhancement of MIP-composite sensor for explosive detection using DNT-dengue virus template: A co-imprinting approach | Tancharoen C., Sukjee W., Yenchitsomanus P.t., Panya A., Lieberzeit P.A., Sangma C. | 2021 | Materials Letters 285 | 18 |
17 | Molecularly Imprinted Polymers for Diagnostics: Sensing High Density Lipoprotein and Dengue Virus | Lieberzeit P., Chunta S., Navakul K., Sangma C., Jungmann C. | 2016 | Procedia Engineering 168,pp. 101-104 | 17 |
18 | Design and generation of humanized single-chain Fv derived from mouse hybridoma for potential targeting application | Khantasup K., Chantima W., Chantima W., Sangma C., Poomputsa K., Dharakul T., Dharakul T. | 2015 | Monoclonal Antibodies in Immunodiagnosis and Immunotherapy 34(6),pp. 404-417 | 14 |
19 | Prediction of avian influenza A binding preference to human receptor using conformational analysis of receptor bound to hemagglutinin | Jongkon N., Mokmak W., Chuakheaw D., Shaw P., Tongsima S., Sangma C. | 2009 | BMC Genomics 10(SUPPL. 3) | 14 |
20 | Biosensors for Klebsiella pneumoniae with Molecularly Imprinted Polymer (MIP) Technique | Pintavirooj C., Vongmanee N., Sukjee W., Sangma C., Visitsattapongse S. | 2022 | Sensors 22(12) | 13 |
21 | Inhibitory effects of 2-substituted-1-naphthol derivatives on cyclooxygenase I and II | Kongkathip B., Sangma C., Kirtikara K., Luangkamin S., Hasitapan K., Jongkon N., Hannongbua S., Kongkathip N. | 2005 | Bioorganic and Medicinal Chemistry 13(6),pp. 2167-2175 | 11 |
22 | Enhancing sensitivity of QCM for dengue type 1 virus detection using graphene-based polymer composites | Navakul K., Sangma C., Yenchitsomanus P.t., Chunta S., Lieberzeit P.A. | 2021 | Analytical and Bioanalytical Chemistry
| 10 |
23 | Small-Molecule Dengue Virus Co-imprinting and Its Application as an Electrochemical Sensor | Sukjee W., Tancharoen C., Yenchitsomanus P., Gleeson M., Sangma C. | 2017 | ChemistryOpen 6(3),pp. 340-344 | 9 |
24 | Receptor recognition mechanism of human influenza A H1N1 (1918), avian influenza A H5N1 (2004), and pandemic H1N1 (2009) neuraminidase | Jongkon N., Sangma C. | 2012 | Journal of Molecular Modeling 18(1),pp. 285-293 | 9 |
25 | Comparison of viral inactivation methods on the characteristics of extracellular vesicles from SARS-CoV-2 infected human lung epithelial cells | Kongsomros S., Kongsomros S., Pongsakul N., Panachan J., Khowawisetsut L., Somkird J., Sangma C., Kanjanapruthipong T., Wongtrakoongate P., Chairoungdua A., Pattanapanyasat K., Newburg D.S., Morrow A.L., Morrow A.L., Hongeng S., Thitithanyanont A., Chutipongtanate S., Chutipongtanate S. | 2022 | Journal of extracellular vesicles 11(12),pp. e12291 | 9 |
26 | Computer techniques for drug development from Thai traditional medicine | Sangma C., Chuakheaw D., Jongkon N., Gadavanij S. | 2010 | Current Pharmaceutical Design 16(15),pp. 1753-1784 | 7 |
27 | Structural information and computational methods used in design of neuraminidase inhibitors | Sangma C., Hannongbua S. | 2007 | Current Computer-Aided Drug Design 3(2),pp. 113-132 | 7 |
28 | An influenza A virus agglutination test using antibody-like polymers | Sukjee W., Thitithanyanont A., Wiboon-ut S., Lieberzeit P., Paul Gleeson M., Navakul K., Sangma C. | 2017 | Journal of Biomaterials Science, Polymer Edition 28(15),pp. 1786-1795 | 7 |
29 | H5N1 virus plastic antibody based on molecularly imprinted polymers | Sangma C., Lieberzeit P., Sukjee W. | 2017 | Methods in Molecular Biology 1575,pp. 381-388 | 7 |
30 | Molecularly Imprinted Polymer for explosive detection | Tancharoen C., Sukjee W., Sangma C., Wangchareansak T. | 2015 | ACDT 2015 - Proceedings: The 1st Asian Conference on Defence Technology ,pp. 171-174 | 6 |
31 | EV71 virus induced silver nanoparticles self-assembly in polymer composites with an application as virus biosensor | Sukjee W., Sangma C., Lieberzeit P.A., Ketsuwan K., Thepparit C., Chailapakul O., Ngamrojanavanich N. | 2023 | Sensors and Actuators B: Chemical 393 | 6 |
32 | Highly effective detection of DNP and Fe3+ by designed coordination polymers containing electron rich linkers and azo functional groups | Srilaoong P., Buasakun J., Raksakoon C., Sangma C., Chainok K., Harding P., Harding D.J., Duangthongyou T. | 2023 | Polyhedron 233 | 3 |
33 | IDE Gas Sensor Based Dengue Virus Co-imprinting for Detection of 2,4,6-Trinitrotoluene | Puttasakul T., Sukjee W., Pintavirooj C., Sangma C. | 2021 | Proceeding of the 2021 9th International Electrical Engineering Congress, iEECON 2021 ,pp. 555-558 | 3 |
34 | Intra-host diversities of the receptor-binding domain of stork faeces-derived avian H5N1 viruses and its significance as predicted by molecular dynamic simulation | Ubol S., Suksatu A., Modhiran N., Sangma C., Thitithanyanont A., Fukuda M., Juthayothin T. | 2011 | Journal of General Virology 92(2),pp. 307-314 | 3 |
35 | The analysis of binding patterns on different receptors bound to hemagglutinin of avian and avian-like influenza virus using quantum chemical calculations | Sangma C., Nunrium P., Hannongbua S. | 2006 | Journal of Theoretical and Computational Chemistry 5(4),pp. 753-768 | 2 |
36 | Vapor-Phase Substrate Nitroreductase Reaction and its Application as TNT Electrochemical Gas Sensor | Puttasakul T., Tancharoen C., Sukjee W., Sangma C. | 2022 | IEEE Sensors Journal
| 1 |
37 | Detection of 2,4,6-Trinitrotoluene by MIP-composite Based Electrochemical Sensor | Puttasakul T., Tancharoen C., Sukjee W., Pintavirooj C., Sangma C. | 2021 | Proceeding of the 2021 9th International Electrical Engineering Congress, iEECON 2021 ,pp. 559-562 | 1 |
38 | Detection of Creatinine Using Molecularly Imprinted Polymers (MIP) Technique | Pitayataratorn T., Sukjee W., Sangma C., Visitsattapongse S. | 2022 | BMEiCON 2022 - 14th Biomedical Engineering International Conference
| 1 |
39 | Insight into free energy and dynamic cross-correlations of residue for binding affinity of antibody and receptor binding domain SARS-CoV-2 | Chong W.L., Chong W.L., Saparpakorn P., Sangma C., Lee V.S., Hannongbua S. | 2023 | Heliyon 9(1) | 0 |