Expertise Cloud

Acetic acidActivityBimodal porous silicaCalcinationCalcination temperatureCarbon dioxidecarbon dioxide reformingCarbon nanotubesCarbon structureCatalyst activityCatalyst deactivationCatalyst selectivityCatalystscatalytic performanceChitosanchitosan concentrationChlorophyllchromiumCleaner productionCO2CO2 adsorptionCO2 hydrogenationCO2 Reductioncobalt catalystComposite catalystCompositescoppercopper oxideCTABCu-based catalystsDeionized waterDepolymerizing agentDiffusionDimethyl etherDry reforming reactionDryingepoxidationExternal magnetic fieldFe/MCM-41Fe-based catalystsFischer-Tropsch synthesisFourier transform infrared spectroscopyGlycerolGreen catalystGreen EnergyHeterogeneous catalysishydrogenHydrolysisHydrophobicityinfraredLight olefinsMagnetic FieldMagnetic field orientationMagnetic flux densitymanganese oxideMCM-48Mesocellular silicaMesoporous materialsMesoporous silicaMesoporous silica-aluminosilicateMetal compositionMethaneMethane cracking reactionMethanolMethanol synthesisMicrowaveMixed oxidemorphologiesMorphologyNanomaterialsN-doped TiO2NickelOxidative coupling of methanePhotocatalysisPropylenepropylene oxideReactivityRhB degradationRice husk ashrutheniumSBA-15Silica xerogelSilica-aluminosilicatesodium silicateSodium tungstateSol-gel preparationSol–gel preparationSol-gel processSpirulinaTelluriumVisible lightก๊าซคาร์บอนไดออกไซด์การดูดซับการสังเคราะห์การเสื่อมสภาพของตัวเร่งปฏิกิริยาซิลิกาซีโอไลต์ชนิด ZSM-5เถ้าแกลบโพรพิลีนออกไซด์สนามแม่เหล็ก

Interest


Administrative Profile


Resource

  • จำนวนหน่วยปฏิบัติการที่เข้าร่วม 0 หน่วย
  • จำนวนเครื่องมือวิจัย 0 ชิ้น
  • สถานที่ปฏิบัติงานวิจัย
    • ห้อง 1512, 1513, 1517 ชั้น 5 อาคาร1 วิศวกรรมเคมี

งานวิจัยในรอบ 5 ปี

Project

งานวิจัยที่อยู่ระหว่างการดำเนินการ
  • ทุนใน 21 โครงการ (หัวหน้าโครงการ 11 โครงการ, ที่ปรึกษาโครงการ 1 โครงการ, ผู้ร่วมวิจัย 9 โครงการ, หัวหน้าโครงการย่อย 1 โครงการ)
  • ทุนนอก 0 โครงการ
งานวิจัยที่เสร็จสิ้นแล้ว
  • ทุนใน 32 โครงการ (หัวหน้าโครงการ 23 โครงการ, ที่ปรึกษาโครงการ 3 โครงการ, ผู้ร่วมวิจัย 6 โครงการ)
  • ทุนนอก 45 โครงการ (หัวหน้าโครงการ 34 โครงการ, ผู้ร่วมวิจัย 11 โครงการ)

แนวโน้มผลงานทั้งหมดเทียบกับแนวโน้มผลงานในรอบ 5 ปี

Output

  • บทความ 175 เรื่อง (ตีพิมพ์ในวารสารวิชาการ 84 เรื่อง, นำเสนอในการประชุม/สัมมนา 91 เรื่อง)
  • ทรัพย์สินทางปัญญา 2 เรื่อง (อนุสิทธิบัตร 1 เรื่อง, สิทธิบัตร 1 เรื่อง)

แนวโน้มการนำผลงานไปใช้ประโยชน์ในด้านต่างๆ

Outcome

  • การนำผลงานไปใช้ประโยชน์ 61 เรื่อง (เชิงวิชาการ 61 เรื่อง, เชิงนโยบาย/บริหาร 0 เรื่อง, เชิงสาธารณะ 0 เรื่อง, เชิงพาณิชย์ 0 เรื่อง)

รางวัลที่ได้รับ

Award

  • รางวัลที่ได้รับ 26 เรื่อง (ประกาศเกียรติคุณ/รางวัลนักวิจัย 8 เรื่อง, รางวัลผลงานวิจัย/สิ่งประดิษฐ์ 3 เรื่อง, รางวัลผลงานนำเสนอในการประชุมวิชาการ 15 เรื่อง)

นักวิจัยที่มีผลงานงานร่วมกันมากที่สุด 10 คนแรก


Scopus h-index

#Document titleAuthorsYearSourceCited by
1Effect of acidity on the formation of silica-chitosan hybrid materials and thermal conductive propertyWitoon T., Chareonpanich M., Limtrakul J.2009Journal of Sol-Gel Science and Technology
51(2),pp. 146-152
44
2Production of aromatic hydrocarbons from mae-moh ligniteChareonpanich M., Boonfueng T., Limtrakul J.2002Fuel Processing Technology
79(2),pp. 171-179
44
3Effect of unimodal and bimodal MCM-41 mesoporous silica supports on activity of Fe-Cu catalysts for CO2 hydrogenationKiatphuengporn S., Chareonpanich M., Chareonpanich M., Limtrakul J., Limtrakul J.2014Chemical Engineering Journal
240,pp. 527-533
43
4Deactivation of nickel catalysts in methane cracking reaction: Effect of bimodal meso-macropore structure of silica supportTanggarnjanavalukul C., Donphai W., Witoon T., Witoon T., Chareonpanich M., Chareonpanich M., Limtrakul J., Limtrakul J.2015Chemical Engineering Journal
262,pp. 364-371
42
5Synthesis of mixed-phase uniformly infiltrated SBA-3-like in SBA-15 bimodal mesoporous silica from rice husk ashJullaphan O., Witoon T., Chareonpanich M.2009Materials Letters
63(15),pp. 1303-1306
41
6Effect of hierarchical meso-macroporous alumina-supported copper catalyst for methanol synthesis from CO2 hydrogenationWitoon T., Witoon T., Bumrungsalee S., Chareonpanich M., Chareonpanich M., Limtrakul J., Limtrakul J.2015Energy Conversion and Management
103,pp. 886-894
40
7Hydrocracking of aromatic hydrocarbons over USY-zeoliteChareonpanich M., Zhang Z., Tomita A.1996Energy and Fuels
10(4),pp. 927-931
40
8Effect of Ni-CNTs/mesocellular silica composite catalysts on carbon dioxide reforming of methaneDonphai W., Faungnawakij K., Chareonpanich M., Chareonpanich M., Limtrakul J., Limtrakul J.2014Applied Catalysis A: General
475,pp. 16-26
38
9Effect of magnetic field on CO2 conversion over Cu-ZnO/ZrO2 catalyst in hydrogenation reactionDonphai W., Piriyawate N., Witoon T., Jantaratana P., Varabuntoonvit V., Chareonpanich M.2016Journal of CO2 Utilization
16,pp. 204-211
36
10Effect of hierarchical meso-macroporous silica supports on Fischer-Tropsch synthesis using cobalt catalystWitoon T., Chareonpanich M., Limtrakul J.2011Fuel Processing Technology
92(8),pp. 1498-1505
34
11Effect of catalysts on yields of monocyclic aromatic hydrocarbons in hydrocracking of coal volatile matterChareonpanich M., Zhang Z., Nishijima A., Tomita A.1995Fuel
74(11),pp. 1636-1640
34
12High performance visible-light responsive Chl-Cu/ZnO catalysts for photodegradation of rhodamine BWorathitanon C., Jangyubol K., Ruengrung P., Donphai W., Klysubun W., Chanlek N., Prasitchoke P., Chareonpanich M.2019Applied Catalysis B: Environmental
241,pp. 359-366
33
13Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic techniqueChareonpanich M., Nanta-ngern A., Limtrakul J.2007Materials Letters
61(29),pp. 5153-5156
30
14Synthesis of hierarchical meso-macroporous silica monolith using chitosan as biotemplate and its application as polyethyleneimine support for CO 2 captureWitoon T., Chareonpanich M.2012Materials Letters
81,pp. 181-184
29
15Novel visible-light-sensitized Chl-Mg/P25 catalysts for photocatalytic degradation of rhodamine BPhongamwong T., Donphai W., Prasitchoke P., Rameshan C., Barrabés N., Klysubun W., Rupprechter G., Chareonpanich M.2017Applied Catalysis B: Environmental
207,pp. 326-334
27
16Bench-scale synthesis of zeolite A from subbituminous coal ashes with high crystalline silica contentChareonpanich M., Jullaphan O., Tang C.2011Journal of Cleaner Production
19(1),pp. 58-63
26
17Pore size effects on physicochemical properties of Fe-Co/K-Al 2 O 3 catalysts and their catalytic activity in CO 2 hydrogenation to light olefinsNumpilai T., Chanlek N., Poo-Arporn Y., Wannapaiboon S., Cheng C., Siri-Nguan N., Sornchamni T., Kongkachuichay P., Chareonpanich M., Rupprechter G., Limtrakul J., Witoon T., Witoon T.2019Applied Surface Science
483,pp. 581-592
26
18Preparation of silica xerogel with high silanol content from sodium silicate and its application as CO2 adsorbentWitoon T., Tatan N., Rattanavichian P., Chareonpanich M.2011Ceramics International
37(7),pp. 2297-2303
25
19Chitosan-assisted combustion synthesis of CuO-ZnO nanocomposites: Effect of pH and chitosan concentrationWitoon T., Permsirivanich T., Chareonpanich M.2013Ceramics International
39(3),pp. 3371-3375
25
20Tuning adsorption properties of GaxIn2−xO3 catalysts for enhancement of methanol synthesis activity from CO2 hydrogenation at high reaction temperatureAkkharaphatthawon N., Chanlek N., Cheng C., Chareonpanich M., Limtrakul J., Witoon T., Witoon T.2019Applied Surface Science
489,pp. 278-286
23
21Direct synthesis of dimethyl ether from CO2 and H2 over novel bifunctional catalysts containing CuO-ZnO-ZrO2 catalyst admixed with WOx/ZrO2 catalystsWitoon T., Kidkhunthod P., Chareonpanich M., Limtrakul J.2018Chemical Engineering Journal
348,pp. 713-722
22
22Catalytic hydrocracking reaction of nascent coal volatile matter under high pressureChareonpanich M., Takeda T., Yamashita H., Tomita A.1994Fuel
73(5),pp. 666-670
22
23Magnetic field-enhanced catalytic CO2 hydrogenation and selective conversion to light hydrocarbons over Fe/MCM-41 catalystsKiatphuengporn S., Jantaratana P., Limtrakul J., Limtrakul J., Chareonpanich M.2016Chemical Engineering Journal
306,pp. 866-875
22
24Carbon-structure affecting catalytic carbon dioxide reforming of methane reaction over Ni-carbon compositesDonphai W., Witoon T., Faungnawakij K., Chareonpanich M.2016Journal of CO2 Utilization
16,pp. 245-256
21
25Direct synthesis of dimethyl ether from CO2 hydrogenation over novel hybrid catalysts containing a Cu–ZnO–ZrO2 catalyst admixed with WOx/Al2O3 catalysts: Effects of pore size of Al2O3 support and W loading contentSuwannapichat Y., Numpilai T., Chanlek N., Faungnawakij K., Chareonpanich M., Limtrakul J., Witoon T.2018Energy Conversion and Management
159,pp. 20-29
21
26Cleaner production of methanol from carbon dioxide over copper and iron supported MCM-41 catalysts using innovative integrated magnetic field-packed bed reactorKiatphuengporn S., Donphai W., Jantaratana P., Yigit N., Föttinger K., Rupprechter G., Chareonpanich M.2017Journal of Cleaner Production
142,pp. 1222-1233
19
27Photocatalytic performance of TiO2-zeolite templated carbon composites in organic contaminant degradationDonphai W., Donphai W., Kamegawa T., Kamegawa T., Chareonpanich M., Nueangnoraj K., Nishihara H., Kyotani T., Yamashita H., Yamashita H.2014Physical Chemistry Chemical Physics
16(45),pp. 25004-25007
18
28Synthesis of hierarchical faujasite nanosheets from corn cob ash-derived nanosilica as efficient catalysts for hydrogenation of lignin-derived alkylphenolsSalakhum S., Yutthalekha T., Chareonpanich M., Limtrakul J., Wattanakit C.2018Microporous and Mesoporous Materials
258,pp. 141-150
17
29Tuning Interactions of Surface-adsorbed Species over Fe−Co/K−Al2O3 Catalyst by Different K Contents: Selective CO2 Hydrogenation to Light OlefinsNumpilai T., Chanlek N., Poo-Arporn Y., Cheng C.K., Siri-Nguan N., Sornchamni T., Chareonpanich M., Kongkachuichay P., Yigit N., Rupprechter G., Limtrakul J., Witoon T., Witoon T.2020ChemCatChem
12(12),pp. 3306-3320
17
30Preparation and characterization of Co-Cu-ZrO2 nanomaterials and their catalytic activity in CO2 methanationDumrongbunditkul P., Witoon T., Chareonpanich M., Mungcharoen T.2016Ceramics International
42(8),pp. 10444-10451
16
31Multimetallic catalysts of RuO2-CuO-Cs2O-TiO2/SiO2 for direct gas-phase epoxidation of propylene to propylene oxideChukeaw T., Seubsai A., Phon-In P., Charoen K., Witoon T., Donphai W., Parpainainar P., Chareonpanich M., Noon D., Zohour B., Senkan S.2016RSC Advances
6(61),pp. 56116-56126
16
32One-pot synthesis of core-shell silica-aluminosilicate composites: Effect of pH and chitosan additionChamnankid B., Witoon T., Kongkachuichay P., Chareonpanich M.2011Colloids and Surfaces A: Physicochemical and Engineering Aspects
380(1-3),pp. 319-326
15
33Direct epoxidation of propylene to propylene oxide over RuO2-CuO-NaCl-TeO2-MnOx/SiO2 catalystsPhon-in P., Seubsai A., Chukeaw T., Charoen K., Donphai W., Prapainainar P., Chareonpanich M., Noon D., Zohour B., Senkan S.2016Catalysis Communications
86,pp. 143-147
15
34Reactivity of Ni-carbon nanofibers/mesocellular silica composite catalyst for phenylacetylene hydrogenationDonphai W., Donphai W., Kamegawa T., Kamegawa T., Chareonpanich M., Yamashita H., Yamashita H.2014Industrial and Engineering Chemistry Research
53(24),pp. 10105-10111
14
35Selective Production of BTX by Hydrocracking of Coal Volatile Matter over Zeolite CatalystChareonpanich M., Tomita A., Nishijima A.1994Energy and Fuels
8(6),pp. 1522-1523
13
36Single and bimetallic catalyst screenings of noble metals for methane combustionKumsung W., Chareonpanich M., Kongkachuichay P., Senkan S., Seubsai A.2018Catalysis Communications
110,pp. 83-87
13
37CO2 hydrogenation to methanol at high reaction temperatures over In2O3/ZrO2 catalysts: Influence of calcination temperatures of ZrO2 supportNumpilai T., Kidkhunthod P., Cheng C.K., Wattanakit C., Chareonpanich M., Limtrakul J., Witoon T., Witoon T.2020Catalysis Today
13
38Development of SO42−–ZrO2 acid catalysts admixed with a CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to dimethyl etherTemvuttirojn C., Chuasomboon N., Numpilai T., Faungnawakij K., Chareonpanich M., Limtrakul J., Witoon T., Witoon T.2019Fuel
241,pp. 695-703
12
39Impact of physicochemical properties of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond on drug loading and release behaviorNumpilai T., Witoon T., Chareonpanich M., Limtrakul J., Limtrakul J.2017Applied Surface Science
396,pp. 504-514
12
40Interaction of chitosan with tetraethyl orthosilicate on the formation of silica nanoparticles: Effect of pH and chitosan concentrationWitoon T., Chareonpanich M.2012Ceramics International
38(7),pp. 5999-6007
12
41Size control of nanostructured silica using chitosan template and fractal geometry: Effect of chitosan/silica ratio and aging temperatureWitoon T., Chareonpanich M., Limtrakul J.2010Journal of Sol-Gel Science and Technology
56(3),pp. 270-277
12
42Epoxidation of propylene to propylene oxide with molecular oxygen over Sb2O3-CuO-NaCl/SiO2 catalystsSeubsai A., Noon D., Chukeaw T., Zohour B., Donphai W., Chareonpanich M., Senkan S.2015Journal of Industrial and Engineering Chemistry
32,pp. 292-297
12
43High Stability of Ruthenium–Copper-Based Catalysts for Epoxidation of PropyleneSeubsai A., Uppala C., Tiencharoenwong P., Chukeaw T., Chareonpanich M., Zohour B., Noon D., Senkan S.2018Catalysis Letters
148(2),pp. 586-600
12
44Effect of pore size and surface chemistry of porous silica on CO 2 adsorptionWitoon T., Witoon T., Chareonpanich M., Chareonpanich M.2012Songklanakarin Journal of Science and Technology
34(4),pp. 403-407
11
45Effect of pH and chitosan concentration on precipitation and morphology of hierarchical porous silicaWitoon T., Tepsarn S., Kittipokin P., Embley B., Chareonpanich M.2011Journal of Non-Crystalline Solids
357(19-20),pp. 3513-3519
11
46Sustainable production of methanol from CO2 over 10Cu-10Fe/ZSM-5 catalyst in a magnetic field-assisted packed bed reactorSriakkarin C., Umchoo W., Donphai W., Poo-arporn Y., Chareonpanich M.2018Catalysis Today
314,pp. 114-121
10
47Production of glycerol carbonate from glycerol over templated-sodium-aluminate catalysts prepared using a spray-drying methodRittiron P., Niamnuy C., Donphai W., Chareonpanich M., Seubsai A.2019ACS Omega
4(5),pp. 9001-9009
10
48Preparation and photocatalytic study of fibrous K0.3Ti4O7.3(OH)1.7-anatase TiO2 nanocomposite photocatalystTawkaew S., Tawkaew S., Chareonpanich M., Supothina S.2008Materials Chemistry and Physics
111(2-3),pp. 232-237
9
49Green and sustainable methanol production from CO2 over magnetized Fe–Cu/core–shell and infiltrate mesoporous silica-aluminosilicatesUmchoo W., Sriakkarin C., Donphai W., Warakulwit C., Poo-arporn Y., Jantaratana P., Witoon T., Chareonpanich M.2018Energy Conversion and Management
159,pp. 342-352
8
50Role of Nitrogen on the Porosity, Surface, and Electrochemical Characteristics of Activated CarbonTreeweranuwat P., Boonyoung P., Chareonpanich M., Nueangnoraj K.2020ACS Omega
5(4),pp. 1911-1918
8
51Hydrogen and carbon allotrope production through methane cracking over Ni/bimodal porous silica catalyst: Effect of nickel precursorDonphai W., Phichairatanaphong O., Klysubun W., Chareonpanich M.2018International Journal of Hydrogen Energy
,pp. 21798-21809
7
52Screening of single and binary catalysts for oxidative coupling of methane to value-added chemicalsChukeaw T., Sringam S., Chareonpanich M., Seubsai A.2019Molecular Catalysis
470,pp. 40-47
7
53Direct propylene epoxidation over RuO2-CuO-NaCl-TeO2-MnOx/SiO2 catalysts: Optimized operating conditions and catalyst characterizationSeubsai A., Phon-In P., Chukeaw T., Uppala C., Prapainainar P., Chareonpanich M., Zohour B., Noon D., Senkan S.2017Industrial and Engineering Chemistry Research
56(1),pp. 100-110
7
54Effect of bimodal porous silica on particle size and reducibility of cobalt oxideWitoon T., Chareonpanich M., Limtrakul J.2013Journal of Porous Materials
20(3),pp. 481-488
7
55Integrated transdisciplinary technologies for greener and more sustainable innovations and applications of Cleaner Production in the Asia–Pacific regionChareonpanich M., Kongkachuichay P., Donphai W., Mungcharoen T., Huisingh D.2017Journal of Cleaner Production
142,pp. 1131-1137
6
56Influence of the Calcination Technique of Silica on the Properties and Performance of Ni/SiO2 Catalysts for Synthesis of Hydrogen via Methane Cracking ReactionPanchan N., Panchan N., Donphai W., Donphai W., Donphai W., Junsomboon J., Niamnuy C., Niamnuy C., Niamnuy C., Chareonpanich M., Chareonpanich M., Chareonpanich M.2019ACS Omega
4(19),pp. 18076-18086
6
57Production of glycerol carbonate from glycerol over modified sodium-aluminate-doped calcium oxide catalystsChotchuang A., Kunsuk P., Phanpitakkul A., Chanklang S., Chareonpanich M., Seubsai A.2020Catalysis Today
6
58Hydrophilic and hydrophobic mesoporous silica derived from rice husk ash as a potential drug carrierSuttiruengwong S., Pivsa-Art S., Chareonpanich M.2018Materials
11(7)
5
59Optimization of metal atomic ratio of Pd x Ru y Ni z on carbon support for ethanol oxidationCharoen K., Warakulwit C., Prapainainar C., Seubsai A., Chareonpanich M., Prapainainar P.2017Applied Surface Science
421,pp. 2-17
5
60Morphology and adsorption capacity of sodium silicate-based hierarchical porous silica templated on natural rubber: Influence of washing-drying methodsPhatharachindanuwong C., Hansupalak N., Chareonpanich M., Chisti Y., Limtrakul J., Plank J.2014Materials Letters
130,pp. 206-209
5
61Co-Ti-O complex oxides: Hydrothermal synthesis, phase characterization, color analysis and catalytic activity assessmentRujiwatra A., Semakul N., Surinwong S., Chareonpanich M.2015Chiang Mai Journal of Science
42(4),pp. 857-867
4
62Preparation of mesoporous silica from rice husk ash: Effect of depolymerizing agents on physico-chemical propertiesSuttiruengwong S., Suttiruengwong S., Suttiruengwong S., Puathawee P., Chareonpanich M.2010Advanced Materials Research
93-94,pp. 664-667
4
63Remarkable Increase of BTX Yield by Zeolite Catalyst in the Hydrocracking of Coal Volatile MatterChareonpanich M., Zhang Z., Nishijima A., Tomita A.1995Coal Science and Technology
24(C),pp. 1483-1486
4
64PH sensitive structural uniformity of rice husk ash-derived MCM-41 silicaTeabpinyok N., Chareonpanich M., Samingprai S., Limtrakul J.2012Canadian Journal of Chemical Engineering
90(4),pp. 881-887
4
65Synthesis of Value-Added Chemicals via Oxidative Coupling of Methanes over Na2WO4-TiO2-MnOx/SiO2Catalysts with Alkali or Alkali Earth Oxide AdditivesKidamorn P., Tiyatha W., Chukeaw T., Niamnuy C., Chareonpanich M., Sohn H., Seubsai A.2020ACS Omega
5(23),pp. 13612-13620
4
66CO2 Hydrogenation to Light Olefins Over In2O3/SAPO-34 and Fe-Co/K-Al2O3 Composite CatalystNumpilai T., Kahadit S., Witoon T., Witoon T., Ayodele B.V., Cheng C.K., Siri-Nguan N., Sornchamni T., Wattanakit C., Chareonpanich M., Limtrakul J.2021Topics in Catalysis
4
67The Improved Photoelectrochemical Performance of WO3/BiVO4 Heterojunction Thin-Film Photoanodes via Thermal TreatmentPhiankoh S., Prajongtat P., Chareonpanich M., Munprom R.2020Energy Technology
8(5)
4
68Chromium-ruthenium oxides supported on gamma-alumina as an alternative catalyst for partial combustion of methaneChomboon T., Kumsung W., Chareonpanich M., Senkan S., Seubsai A.2019Catalysts
9(4)
4
69Investigation of metal oxide additives onto Na2WO4-Ti/SiO2 catalysts for oxidative coupling of methane to value-added chemicalsSringam S., Kidamorn P., Chukeaw T., Chareonpanich M., Seubsai A.2020Catalysis Today
3
70Synthesis of bagasse ash-derived silica-aluminosilicate composites for methanol adsorptionRuengrung P., Niamlaem M., Jongkraivut P., Donphai W., Chareonpanich M.2020Materials Today: Proceedings
23,pp. 726-731
2
71Drying Techniques Affecting Structure-Reactivity of Pt/Cr-Ta : SrTiO3 Catalysts in Visible Light-Irradiated Water Splitting ReactionDonphai W., Jangyubol K., Worathitanon C., Niamnuy C., Chanlek N., Klysubun W., Chareonpanich M.2019ChemCatChem
11(24),pp. 6339-6348
1
72Infiltrate Mesoporous Silica-Aluminosilicate Structure Improves Hydrogen Production via Methane Decomposition over a Nickel-Based CatalystPhichairatanaphong O., Teepakakorn P., Poo-Arporn Y., Chareonpanich M., Donphai W.2021Industrial and Engineering Chemistry Research
1
73Synthesis of Dimethyl Ether via CO2 Hydrogenation: Effect of the Drying Technique of Alumina on Properties and Performance of Alumina-Supported Copper CatalystsNiamnuy C., Prapaitrakul P., Panchan N., Seubsai A., Witoon T., Devahastin S., Devahastin S., Chareonpanich M.2020ACS Omega
5(5),pp. 2334-2344
1
74CO2 hydrogenation to methanol over CuO-ZnO-ZrO2 catalysts prepared via a CTAB-assisted co-precipitation method: Effect of catalyst compositionsWitoon T., Kachaban N., Chareonpanich M.201420th World Hydrogen Energy Conference, WHEC 2014
3,pp. 1577-1581
0
75Nickel metal with various morphologies: Synthesis and performances for catalytic carbon dioxide reforming with methaneTeabpinyok N., Samingprai S., Chareonpanich M.2012Journal of Nanoscience and Nanotechnology
12(12),pp. 9142-9147
0
76Production of hydrocarbons from carbon dioxide over various zeolite catalystsManeevong V., Chareonpanich M.2004Proceedings of 42nd Kasetsart University Annual Conference
,pp. 267-275
0
77Development of nano-nickel catalyst by using supercritical CO2 for methane crackingCharoenchaitrakool M., Chareonpanich M., Saithongsuk P.2017Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering
0
78Production of Zeolite Y from PerlitePhosawat W., Chareonpanich M., Sudasna-na-Ayudthya P.2003Proceedings of 41st Kasetsart University Annual Conference
,pp. 133-140
0
79Effect of surface treatment technique on properties and performance of Na2WO4-TiO2-MnOx/SiO2 for oxidative coupling of methaneChuntalap Y., Panchan N., Junsomboon J., Srisonphan S., Witoon T., Seubsai A., Chareonpanich M., Niamnuy C.2021Journal of Chemical Technology and Biotechnology
0
80Hydrogenolysis of glycerol to 1,3-propanediol over H-ZSM-5-supported iridium and rhenium oxide catalystsChanklang S., Mondach W., Somchuea P., Witoon T., Chareonpanich M., Faungnawakij K., Seubsai A.2021Catalysis Today
0
81Preparation of C-Zn functionalized MCM-41 from bagasse heavy ash for adsorption of volatile organic compoundsDonphai W., Musikanon N., Du Z., Sangteantong P., Chainarong K., Chareonpanich M.2022Materials Letters
307
0
82Enhanced CO2 hydrogenation to higher alcohols over K-Co promoted In2O3 catalystsWitoon T., Numpilai T., Nijpanich S., Chanlek N., Kidkhunthod P., Cheng C.K., Ng K.H., Vo D.V.N., Ittisanronnachai S., Wattanakit C., Chareonpanich M., Limtrakul J.2021Chemical Engineering Journal
0
83Editorial: Photocatalysis – From Solar Power to Sustainable Chemical ProductionWang X., Faungnawakij K., Chareonpanich M.2019ChemCatChem
11(24),pp. 5838-5841
0
84Application of magnetic field to CO hydrogenation using a confined-space catalyst: effect on reactant gas diffusivity and reactivityDonphai W., Kunthakudee N., Munpollasri S., Sangteantong P., Tonlublao S., Limphirat W., Poo-Arporn Y., Kiatphuengporn S., Chareonpanich M.2021RSC Advances
11(7),pp. 3990-3996
0
85Synthesis of value-added hydrocarbons via oxidative coupling of methane over MnTiO3-Na2WO4/SBA-15 catalystsChukeaw T., Tiyatha W., Jaroenpanon K., Witoon T., Kongkachuichay P., Chareonpanich M., Faungnawakij K., Yigit N., Rupprechter G., Seubsai A.2021Process Safety and Environmental Protection
148,pp. 1110-1122
0
86Effect of Modified Nanoclay Surface Supported Nickel Catalyst on Carbon Dioxide Reforming of MethaneChaisamphao J., Kiatphuengporn S., Faungnawakij K., Donphai W., Donphai W., Chareonpanich M., Chareonpanich M.2021Topics in Catalysis
0
87CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phasesWitoon T., Chalorngtham J., Dumrongbunditkul P., Chareonpanich M., Limtrakul J., Limtrakul J.2016Chemical Engineering Journal
293,pp. 327-336
175
88High-Performance Asymmetric Supercapacitors of MnCo2O4 Nanofibers and N-Doped Reduced Graphene Oxide AerogelPettong T., Pettong T., Iamprasertkun P., Iamprasertkun P., Krittayavathananon A., Sukha P., Sukha P., Sirisinudomkit P., Sirisinudomkit P., Seubsai A., Chareonpanich M., Kongkachuichay P., Limtrakul J., Sawangphruk M.2016ACS Applied Materials and Interfaces
8(49),pp. 34045-34053
127
89Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ashChareonpanich M., Namto T., Kongkachuichay P., Limtrakul J.2004Fuel Processing Technology
85(15),pp. 1623-1634
121
90CO2 hydrogenation to methanol over CuO–ZnO–ZrO2–SiO2 catalysts: Effects of SiO2 contentsPhongamwong T., Chantaprasertporn U., Witoon T., Numpilai T., Poo-arporn Y., Limphirat W., Donphai W., Dittanet P., Chareonpanich M., Limtrakul J., Limtrakul J.2017Chemical Engineering Journal
316,pp. 692-703
107
91Tuning of catalytic CO2 hydrogenation by changing composition of CuO-ZnO-ZrO2 catalystsWitoon T., Kachaban N., Donphai W., Kidkhunthod P., Faungnawakij K., Chareonpanich M., Limtrakul J., Limtrakul J.2016Energy Conversion and Management
118,pp. 21-31
84
92Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanolWitoon T., Numpilai T., Phongamwong T., Donphai W., Boonyuen C., Warakulwit C., Chareonpanich M., Limtrakul J.2018Chemical Engineering Journal
334,pp. 1781-1791
81
93Synthesis of bimodal porous silica from rice husk ash via sol-gel process using chitosan as templateWitoon T., Chareonpanich M., Limtrakul J.2008Materials Letters
62(10-11),pp. 1476-1479
80
94Structure–activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefinsNumpilai T., Witoon T., Chanlek N., Limphirat W., Bonura G., Chareonpanich M., Limtrakul J., Limtrakul J.2017Applied Catalysis A: General
547,pp. 219-229
60
95Direct synthesis of dimethyl ether from CO2 hydrogenation over Cu-ZnO-ZrO2/SO42--ZrO2 hybrid catalysts: Effects of sulfur-to-zirconia ratiosWitoon T., Witoon T., Permsirivanich T., Kanjanasoontorn N., Akkaraphataworn C., Seubsai A., Faungnawakij K., Warakulwit C., Chareonpanich M., Chareonpanich M., Limtrakul J., Limtrakul J.2015Catalysis Science and Technology
5(4),pp. 2347-2357
59
96CO2 hydrogenation to methanol over Cu/ZnO nanocatalysts prepared via a chitosan-assisted co-precipitation methodWitoon T., Permsirivanich T., Donphai W., Jaree A., Chareonpanich M.2013Fuel Processing Technology
116,pp. 72-78
52
97Role of chlorophyll in Spirulina on photocatalytic activity of CO2 reduction under visible light over modified N-doped TiO2 photocatalystsPhongamwong T., Chareonpanich M., Chareonpanich M., Limtrakul J., Limtrakul J.2015Applied Catalysis B: Environmental
168-169,pp. 114-124
49
98Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34Numpilai T., Wattanakit C., Chareonpanich M., Limtrakul J., Witoon T., Witoon T.2019Energy Conversion and Management
180,pp. 511-523
46