# | Document title | Authors | Year | Source | Cited by |
1 | The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum | Agren R., Liu L., Shoaie S., Vongsangnak W., Nookaew I., Nielsen J. | 2013 | PLoS Computational Biology 9(3) | 279 |
2 | De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology | Nijkamp J.F., Nijkamp J.F., van den Broek M., van den Broek M., Datema E., Datema E., Datema E., de Kok S., de Kok S., de Kok S., Bosman L., Bosman L., Luttik M.A., Luttik M.A., Daran-Lapujade P., Daran-Lapujade P., Vongsangnak W., Vongsangnak W., Nielsen J., Heijne W.H.M., Klaassen P., Paddon C.J., Platt D., Kötter P., van Ham R.C., van Ham R.C., van Ham R.C., Reinders M.J.T., Reinders M.J.T., Reinders M.J.T., Pronk J.T., Pronk J.T., de Ridder D., de Ridder D., de Ridder D., de Ridder D., Daran J.M., Daran J.M., Daran J.M. | 2012 | Microbial Cell Factories 11 | 196 |
3 | Biomedical text mining and its applications in cancer research | Zhu F., Patumcharoenpol P., Zhang C., Yang Y., Chan J., Meechai A., Vongsangnak W., Shen B., Shen B. | 2013 | Journal of Biomedical Informatics 46(2),pp. 200-211 | 165 |
4 | Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis | Li Y., Zhang Z., Liu F., Vongsangnak W., Jing Q., Jing Q., Shen B. | 2012 | Nucleic Acids Research 40(10),pp. 4298-4305 | 126 |
5 | Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis | Hong K., Hong K., Vongsangnak W., Vongsangnak W., Vemuri G., Nielsen J., Nielsen J. | 2011 | Proceedings of the National Academy of Sciences of the United States of America 108(29),pp. 12179-12184 | 122 |
6 | Towards efficient extraction of notoginseng saponins from cultured cells of Panax notoginseng | Vongsangnak W., Vongsangnak W., Gua J., Chauvatcharin S., Zhong J.J. | 2004 | Biochemical Engineering Journal 18(2),pp. 115-120 | 102 |
7 | A trispecies Aspergillus microarray: Comparative transcriptomics of three Aspergillus species | Andersen M., Vongsangnak W., Panagiotou G., Salazar M., Lehmann L., Nielsen J. | 2008 | Proceedings of the National Academy of Sciences of the United States of America 105(11),pp. 4387-4392 | 99 |
8 | BioMet Toolbox: Genome-wide analysis of metabolism | Cvijovic M., Olivares-Hernandez R., Agren R., Dahr N., Vongsangnak W., Nookaew I., Patil K., Nielsen J. | 2010 | Nucleic Acids Research 38(SUPPL. 2) | 89 |
9 | Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae | Vongsangnak W., Vongsangnak W., Olsen P., Hansen K., Krogsgaard S., Nielsen J., Nielsen J. | 2008 | BMC Genomics 9 | 68 |
10 | Whole genome sequencing of Saccharomyces cerevisiae: From genotype to phenotype for improved metabolic engineering applications | Otero J., Otero J., Otero J., Vongsangnak W., Vongsangnak W., Vongsangnak W., Asadollahi M., Asadollahi M., Asadollahi M., Olivares-Hernandes R., Olivares-Hernandes R., Maury J., Maury J., Farinelli L., Barlocher L., Østerås M., Schalk M., Clark A., Nielsen J., Nielsen J. | 2010 | BMC Genomics 11(1) | 60 |
11 | Evaluation and comparison of multiple aligners for next-generation sequencing data analysis | Shang J., Shang J., Zhu F., Vongsangnak W., Tang Y., Zhang W., Shen B. | 2014 | BioMed Research International 2014 | 46 |
12 | Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress | Ruenwai R., Neiss A., Laoteng K., Vongsangnak W., Dalfard A.B., Dalfard A.B., Cheevadhanarak S., Petranovic D., Nielsen J. | 2011 | Biotechnology Journal 6(3),pp. 343-356 | 41 |
13 | Genome-scale analysis of the metabolic networks of oleaginous Zygomycete fungi | Vongsangnak W., Ruenwai R., Tang X., Hu X., Zhang H., Shen B., Song Y., Laoteng K. | 2013 | Gene 521(1),pp. 180-190 | 32 |
14 | Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data analysis | Salazar M., Vongsangnak W., Panagiotou G., Andersen M., Nielsen J. | 2009 | Molecular Genetics and Genomics 282(6),pp. 571-586 | 32 |
15 | Genome-wide analysis of maltose utilization and regulation in aspergilli | Vongsangnak W., Salazar M., Hansen K., Nielsen J. | 2009 | Microbiology 155(12),pp. 3893-3902 | 31 |
16 | Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi | Vongsangnak W., Raethong N., Mujchariyakul W., Nguyen N., Leong H., Laoteng K. | 2017 | Gene 626,pp. 132-139 | 30 |
17 | Increased Lipid Accumulation in Mucor circinelloides by Overexpression of Mitochondrial Citrate Transporter Genes | Yang J., Li S., Kabir Khan M., Garre V., Vongsangnak W., Song Y. | 2019 | Industrial and Engineering Chemistry Research 58(6),pp. 2125-2134 | 28 |
18 | Revealing the beneficial effect of protease supplementation to high gravity beer fermentations using "-omics" techniques | Piddocke M., Fazio A., Vongsangnak W., Vongsangnak W., Wong M., Heldt-Hansen H., Workman C., Nielsen J., Olsson L., Olsson L. | 2011 | Microbial Cell Factories 10 | 28 |
19 | Annotation and analysis of malic enzyme genes encoding for multiple isoforms in the fungus Mucor circinelloides CBS 277.49 | Vongsangnak W., Zhang Y., Chen W., Ratledge C., Ratledge C., Song Y. | 2012 | Biotechnology Letters 34(5),pp. 941-947 | 25 |
20 | Protective effect of lactobacillus reuteri KUB-AC5 against salmonella enteritidis challenge in chickens | Nakphaichit M., Sobanbua S., Siemuang S., Vongsangnak W., Nakayama J., Nitisinprasert S. | 2019 | Beneficial Microbes 10(1),pp. 43-54 | 24 |
21 | Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media | Raethong N., Wang H., Wang H., Nielsen J., Nielsen J., Vongsangnak W., Vongsangnak W. | 2020 | Computational and Structural Biotechnology Journal 18,pp. 1-8 | 23 |
22 | Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis | Raethong N., Laoteng K., Vongsangnak W. | 2018 | Scientific Reports 8(1) | 23 |
23 | Informatics for metabolomics | Kusonmano K., Vongsangnak W., Chumnanpuen P. | 2016 | Advances in Experimental Medicine and Biology 939,pp. 91-115 | 22 |
24 | Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression | Li Y., Vongsangnak W., Chen L., Shen B. | 2014 | BMC Medical Genomics 7(SUPPL.1) | 21 |
25 | Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species | Vongsangnak W., Vongsangnak W., Klanchui A., Tawornsamretkit I., Tatiyaborwornchai W., Laoteng K., Meechai A. | 2016 | Gene 583(2),pp. 121-129 | 21 |
26 | Molecular mechanism of Forkhead box M1 inhibition by thiostrepton in breast cancer cells | Kongsema M., Kongsema M., Wongkhieo S., Khongkow M., Lam E., Boonnoy P., Boonnoy P., Vongsangnak W., Wong-Ekkabut J., Wong-Ekkabut J. | 2019 | Oncology Reports 42(3),pp. 953-962 | 20 |
27 | Alternative metabolic routes in channeling xylose to cordycepin production of Cordyceps militaris identified by comparative transcriptome analysis | Wongsa B., Raethong N., Chumnanpuen P., Wong-ekkabut J., Laoteng K., Vongsangnak W. | 2020 | Genomics 112(1),pp. 629-636 | 16 |
28 | Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response | Geijer C., Pirkov I., Vongsangnak W., Vongsangnak W., Ericsson A., Nielsen J., Krantz M., Krantz M., Hohmann S. | 2012 | BMC Genomics 13(1) | 16 |
29 | Post genome-wide association studies functional characterization of prostate cancer risk loci | Jiang J., Cui W., Vongsangnak W., Hu G., Shen B. | 2013 | BMC Genomics 14(SUPP 8) | 16 |
30 | Genome-scale metabolic representation of Amycolatopsis balhimycina | Vongsangnak W., Vongsangnak W., Vongsangnak W., Figueiredo L., Figueiredo L., Figueiredo L., Förster J., Weber T., Thykaer J., Stegmann E., Wohlleben W., Nielsen J., Nielsen J. | 2012 | Biotechnology and Bioengineering 109(7),pp. 1798-1807 | 16 |
31 | Comparisons of Prostate Cancer Inhibitors Abiraterone and TOK-001 Binding with CYP17A1 through Molecular Dynamics | Xiao F., Yang M., Xu Y., Vongsangnak W. | 2015 | Computational and Structural Biotechnology Journal 13,pp. 520-527 | 12 |
32 | Transcriptome analysis reveals candidate genes involved in luciferin metabolism in Luciola aquatilis (Coleoptera: Lampyridae) | Vongsangnak W., Chumnanpuen P., Sriboonlert A. | 2016 | PeerJ 2016(10) | 12 |
33 | Integrated analysis of the global transcriptional response to α-amylase over-production by Aspergillus oryzae | Vongsangnak W., Hansen K., Nielsen J. | 2011 | Biotechnology and Bioengineering 108(5),pp. 1130-1139 | 11 |
34 | Impacts of killing process on the nutrient content, product stability and in vitro digestibility of black soldier fly (Hermetia illucens) larvae meals | Zhen Y., Chundang P., Zhang Y., Wang M., Vongsangnak W., Pruksakorn C., Kovitvadhi A. | 2020 | Applied Sciences (Switzerland) 10(17) | 10 |
35 | Comparative genome analysis reveals metabolic traits associated with probiotics properties in Lactobacillus reuteri KUB-AC5 | Jatuponwiphat T., Namrak T., Supataragul A., Nitisinprasert S., Nakphaichit M., Vongsangnak W. | 2019 | Gene Reports 17 | 10 |
36 | Systems biology and metabolic engineering of Arthrospira cell factories | Klanchui A., Vorapreeda T., Vongsangnak W., Khannapho C., Cheevadhanarak S., Meechai A. | 2012 | Computational and Structural Biotechnology Journal 3(4),pp. e201210015 | 9 |
37 | Dissecting metabolic behavior of lipid over-producing strain of Mucor circinelloides through genome-scale metabolic network and multi-level data integration | Vongsangnak W., Kingkaw A., Yang J., Song Y., Laoteng K. | 2018 | Gene 670,pp. 87-97 | 9 |
38 | Metabolic responses of carotenoid and cordycepin biosynthetic pathways in cordyceps militaris under light-programming exposure through genome-wide transcriptional analysis | Thananusak R., Laoteng K., Raethong N., Zhang Y., Vongsangnak W. | 2020 | Biology 9(9),pp. 1-14 | 9 |
39 | Cyanobacterial biofuels: Strategies and developments on network and modeling | Klanchui A., Raethong N., Prommeenate P., Vongsangnak W., Meechai A. | 2017 | Advances in Biochemical Engineering/Biotechnology 160,pp. 75-102 | 8 |
40 | Protein–protein interface and disease: Perspective from biomolecular networks | Hu G., Xiao F., Li Y., Li Y., Vongsangnak W. | 2017 | Advances in Biochemical Engineering/Biotechnology 160,pp. 57-74 | 8 |
41 | An integrated text mining framework for metabolic interaction network reconstruction | Patumcharoenpol P., Patumcharoenpol P., Doungpan N., Meechai A., Shen B., Chan J.H., Vongsangnak W., Vongsangnak W. | 2016 | PeerJ 2016(3) | 8 |
42 | Its2 sequencing and targeted meta-proteomics of infant gut mycobiome reveal the functional role of rhodotorula sp. During atopic dermatitis manifestation | Mok K., Suratanon N., Roytrakul S., Charoenlappanit S., Patumcharoenpol P., Chatchatee P., Vongsangnak W., Nakphaichit M. | 2021 | Journal of Fungi 7(9) | 7 |
43 | Identification of Differentially Expressed Non-coding RNA Networks With Potential Immunoregulatory Roles During Salmonella Enteritidis Infection in Ducks | Zhang Y., Dong X., Hou L., Cao Z., Zhu G., Vongsangnak W., Xu Q., Chen G. | 2021 | Frontiers in Veterinary Science 8 | 6 |
44 | Probing Carbon Utilization of Cordyceps militaris by Sugar Transportome and Protein Structural Analysis | Sirithep K., Sirithep K., Xiao F., Raethong N., Zhang Y., Laoteng K., Hu G., Vongsangnak W., Vongsangnak W. | 2020 | Cells 9(2) | 6 |
45 | MetGEMs Toolbox: Metagenome-scale models as integrative toolbox for uncovering metabolic functions and routes of human gut microbiome | Patumcharoenpol P., Nakphaichit M., Panagiotou G., Panagiotou G., Panagiotou G., Senavonge A., Suratannon N., Vongsangnak W. | 2021 | PLoS Computational Biology 17(1 December) | 6 |
46 | Reconstruction of insect hormone pathways in an aquatic firefly, Sclerotia aquatilis (Coleoptera: Lampyridae), using RNA-seq | Chanchay P., Vongsangnak W., Thancharoen A., Sriboonlert A. | 2019 | PeerJ 2019(8) | 6 |
47 | Identification of potential candidate genes involved in the sex determination cascade in an aquatic firefly, Sclerotia aquatilis (Coleoptera, Lampyridae) | Nguantad S., Chumnanpuen P., Thancharoen A., Vongsangnak W., Sriboonlert A. | 2020 | Genomics 112(3),pp. 2590-2602 | 6 |
48 | Analysis of human gut microbiome: Taxonomy and metabolic functions in thai adults | Raethong N., Nakphaichit M., Suratannon N., Sathitkowitchai W., Sathitkowitchai W., Weerapakorn W., Keawsompong S., Vongsangnak W. | 2021 | Genes 12(3),pp. 1-13 | 5 |
49 | Comparative metabolic capabilities for Micrococcus luteus NCTC 2665, the "Fleming" strain, and actinobacteria | Rokem J., Vongsangnak W., Vongsangnak W., Nielsen J. | 2011 | Biotechnology and Bioengineering 108(11),pp. 2770-2775 | 5 |
50 | Construction of Light-Responsive Gene Regulatory Network for Growth, Development and Secondary Metabolite Production in Cordyceps militaris | In-On A., Thananusak R., Ruengjitchatchawalya M., Vongsangnak W., Laomettachit T. | 2022 | Biology 11(1) | 5 |
51 | Probing Genome-Scale Model Reveals Metabolic Capability and Essential Nutrients for Growth of Probiotic Limosilactobacillus reuteri KUB-AC5 | Namrak T., Raethong N., Raethong N., Jatuponwiphat T., Nitisinprasert S., Vongsangnak W., Nakphaichit M. | 2022 | Biology 11(2) | 4 |
52 | In silicoandin vitrodesign of cordycepin encapsulation in liposomes for colon cancer treatment | Khuntawee W., Khuntawee W., Amornloetwattana R., Amornloetwattana R., Vongsangnak W., Namdee K., Yata T., Karttunen M., Wong-Ekkabut J., Wong-Ekkabut J. | 2021 | RSC Advances 11(15),pp. 8475-8484 | 4 |
53 | Analysis of the infant gut microbiome reveals metabolic functional roles associated with healthy infants and infants with atopic dermatitis using metaproteomics | Kingkaw A., Nakphaichit M., Suratannon N., Nitisinprasert S., Wongoutong C., Chatchatee P., Krobthong S., Charoenlappanit S., Roytrakul S., Vongsangnak W. | 2020 | PeerJ 8 | 4 |
54 | Analysis of genome-wide coexpression and coevolution of Aspergillus oryzae and Aspergillus niger | Vongsangnak W., Nookaew I., Salazar M., Nielsen J. | 2010 | OMICS A Journal of Integrative Biology 14(2),pp. 165-175 | 4 |
55 | Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study | Raethong N., Wong-Ekkabut J., Laoteng K., Vongsangnak W. | 2016 | BioMed Research International 2016 | 3 |
56 | Chondroitin Sulfate and Its Derivatives: A Review of Microbial and Other Production Methods | Awofiranye A.E., Hudson J., Tithi A.D., Linhardt R.J., Vongsangnak W., Koffas M.A.G., Koffas M.A.G. | 2022 | Fermentation 8(7) | 3 |
57 | Screening and identification of SipC-interacting proteins in Salmonella enteritidis using Gal4 yeast two-hybrid system in duck | Zhang Y., Gu T., Chen Y., Zhu G., Vongsangnak W., Xu Q., Chen G. | 2019 | PeerJ 2019(9) | 3 |
58 | Systems biology methods and developments of filamentous fungi in relation to the production of food ingredients | Vongsangnak W., Nielsen J. | 2013 | Microbial Production of Food Ingredients, Enzymes and Nutraceuticals ,pp. 19-41 | 3 |
59 | Metabolic traits specific for lipid-overproducing strain of Mucor circinelloides WJ11 identified by genome-scale modeling approach | Na Ayudhya N.I., Laoteng K., Song Y., Meechai A., Vongsangnak W. | 2019 | PeerJ 7 | 2 |
60 | Preliminary study: Proteomic profiling uncovers potential proteins for biomonitoring equine melanocytic neoplasm | Tesena P., Tesena P., Kingkaw A., Vongsangnak W., Pitikarn S., Phaonakrop N., Roytrakul S., Kovitvadhi A. | 2021 | Animals 11(7) | 2 |
61 | Weighted gene co-expression network analysis identifies potential regulators in response to Salmonella Enteritidis challenge in the reproductive tract of laying ducks | ZHANG Y., LUO S.w., HOU L.e., GU T.t., ZHU G.q., VONGSANGNAK W., XU Q., CHEN G.h. | 2022 | Journal of Integrative Agriculture 21(8),pp. 2384-2398 | 2 |
62 | Integrative growth physiology and transcriptome profiling of probiotic limosilactobacillus reuteri kub-ac5 | Jatuponwiphat T., Namrak T., Nitisinprasert S., Nakphaichit M., Vongsangnak W. | 2021 | PeerJ 9 | 2 |
63 | Iron-associated protein interaction networks reveal the key functional modules related to survival and virulence of Pasteurella multocida | Jatuponwiphat T., Chumnanpuen P., Othman S., E-kobon T., Vongsangnak W. | 2019 | Microbial Pathogenesis 127,pp. 257-266 | 2 |
64 | Translational biomedical informatics and computational systems medicine | Zhao Z., Zhao Z., Shen B., Lu X., Vongsangnak W. | 2013 | BioMed Research International 2013 | 2 |
65 | Bibliome mining platform and application for building metabolic interaction network | Patumcharoenpol P., Patumcharoenpol P., Chan J., Meechai A., Shen B., Vongsangnak W. | 2012 | Procedia Computer Science 11,pp. 55-62 | 2 |
66 | Comparative genomics-based probiotic relevance of Limosilactobacillus fermentum KUB-D18 | Phujumpa P., Muangham S., Jatuponwiphat T., Koffas M., Nakphaichit M., Vongsangnak W. | 2022 | Gene 840 | 1 |
67 | Dual Transcriptomic Analyses Unveil Host–Pathogen Interactions Between Salmonella enterica Serovar Enteritidis and Laying Ducks (Anas platyrhynchos) | Zhang Y., Song L., Hou L., Cao Z., Vongsangnak W., Zhu G., Xu Q., Chen G. | 2021 | Frontiers in Microbiology 12 | 1 |
68 | In silico analysis of mucor circinelloides genome-scale model for enhancing lipid production | Klanchui A., Vongsangnak W., Laoteng K., Meechai A. | 2016 | ACM International Conference Proceeding Series ,pp. 14-18 | 1 |
69 | Enhancing Genome-Scale Model by Integrative Exometabolome and Transcriptome: Unveiling Carbon Assimilation towards Sphingolipid Biosynthetic Capability of Cordyceps militaris | Cheawchanlertfa P., Chitcharoen S., Chitcharoen S., Raethong N., Liu Q., Chumnanpuen P., Soommat P., Song Y., Song Y., Koffas M., Laoteng K., Vongsangnak W. | 2022 | Journal of Fungi 8(8) | 1 |
70 | Whole genome analysis and elucidation of docosahexaenoic acid (DHA) biosynthetic pathway in Aurantiochytrium sp. SW1 | Prabhakaran P., Prabhakaran P., Raethong N., Nazir Y., Nazir Y., Halim H., Yang W., Vongsangnak W., Abdul Hamid A., Song Y. | 2022 | Gene 846 | 1 |
71 | The salmonella effector Hcp modulates infection response, and affects salmonella adhesion and egg contamination incidences in ducks | Song L., Wu J., Weng K., Yao F., Vongsangnak W., Zhu G., Chen G., Zhang Y., Xu Q. | 2022 | Frontiers in Cellular and Infection Microbiology 12 | 1 |
72 | Dissecting Metabolic Regulation in Mycelial Growth and Fruiting Body Developmental Stages of Cordyceps militaris through Integrative Transcriptome Analysis | Thananusak R., Laoteng K., Raethong N., Koffas M., Koffas M., Vongsangnak W. | 2022 | Biotechnology and Bioprocess Engineering
| 0 |
73 | Analyzing Predominant Bacterial Species and Potential Short-Chain Fatty Acid-Associated Metabolic Routes in Human Gut Microbiome Using Integrative Metagenomics | Kingkaw A., Raethong N., Patumcharoenpol P., Suratannon N., Nakphaichit M., Keawsompong S., Roytrakul S., Vongsangnak W. | 2023 | Biology 12(1) | 0 |
74 | Transcriptome Landscapes of Salt-Susceptible Rice Cultivar IR29 Associated with a Plant Growth Promoting Endophytic Streptomyces | Kruasuwan W., Kruasuwan W., Kruasuwan W., Lohmaneeratana K., Munnoch J.T., Vongsangnak W., Jantrasuriyarat C., Hoskisson P.A., Thamchaipenet A. | 2023 | Rice 16(1) | 0 |
75 | Revealing holistic metabolic responses associated with lipid and docosahexaenoic acid (DHA) production in Aurantiochytrium sp. SW1 | Prabhakaran P., Prabhakaran P., Raethong N., Thananusak R., Nazir M.Y.M., Nazir M.Y.M., Sapkaew C., Soommat P., Kingkaw A., Hamid A.A., Vongsangnak W., Song Y. | 2023 | Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 1868(5) | 0 |
76 | Functional genomics and systems biology of Cordyceps species for biotechnological applications | Raethong N., Raethong N., Thananusak R., Cheawchanlertfa P., Cheawchanlertfa P., Prabhakaran P., Rattanaporn K., Laoteng K., Koffas M., Vongsangnak W. | 2023 | Current Opinion in Biotechnology 81 | 0 |
77 | The development of molecular genetics concept test for senior high school students using Rasch analysis | Sari I.J., Sari I.J., Pongsophon P., Vongsangnak W., Pimthong P., Pitiporntapin S. | 2022 | International Journal of Evaluation and Research in Education 11(4),pp. 1687-1695 | 0 |
78 | Comparative gene clusters analysis of Cordyceps militaris and related entomopathogenic fungi | Vongsangnak W., Mujchariyakul W., Wizaza C., Patumcharoenpol P., Kittichotirat W. | 2018 | ACM International Conference Proceeding Series
| 0 |
79 | In silico analysis of plant and animal transposable elements | Huang M.L., Wattanachaisaereekul S., Han Y.J., Vongsangnak W. | 2014 | International Journal of Bioinformatics Research and Applications 10(3),pp. 297-306 | 0 |
80 | Preface to selected papers from the 6th International Conference on Computational Systems-Biology and Bioinformatics (CSBio2015) | Kittichotirat W., Engchuan W., Vongsangnak W., Meechai A. | 2016 | Journal of Bioinformatics and Computational Biology 14(1) | 0 |
81 | Parallel screening and cheminformatics modeling of flavonoid activated aptasensors | Xiu Y., Xiu Y., Xiu Y., Zhang N., Prabhakaran P., Jang S., Yuan Q., Breneman C.M., Jung G.Y., Vongsangnak W., Koffas M.A.G., Koffas M.A.G. | 2022 | Synthetic and Systems Biotechnology 7(4),pp. 1148-1158 | 0 |
82 | Faecal Proteomics and Functional Analysis of Equine Melanocytic Neoplasm in Grey Horses | Tesena P., Tesena P., Kingkaw A., Phaonakrop N., Roytrakul S., Limudomporn P., Vongsangnak W., Kovitvadhi A. | 2022 | Veterinary Sciences 9(2) | 0 |