# | Document title | Authors | Year | Source | Cited by |
1 | The best-so-far selection in Artificial Bee Colony algorithm | Banharnsakun A., Achalakul T., Sirinaovakul B. | 2011 | Applied Soft Computing Journal, 11(2), pp. 2888-2901 | 413 |
2 | Job shop scheduling with the Best-so-far ABC | Banharnsakun A., Sirinaovakul B., Achalakul T. | 2012 | Engineering Applications of Artificial Intelligence, 25(3), pp. 583-593 | 122 |
3 | A MapReduce-based artificial bee colony for large-scale data clustering | Banharnsakun A. | 2017 | Pattern Recognition Letters, 93, pp. 78-84 | 53 |
4 | Hybrid ABC-ANN for pavement surface distress detection and classification | Banharnsakun A. | 2017 | International Journal of Machine Learning and Cybernetics, 8(2), pp. 699-710 | 49 |
5 | Towards improving the convolutional neural networks for deep learning using the distributed artificial bee colony method | Banharnsakun A. | 2019 | International Journal of Machine Learning and Cybernetics, 10(6), pp. 1301-1311 | 37 |
6 | Artificial Bee Colony algorithm on distributed environments | Banharnsakun A., Achalakul T., Sirinaovakul B. | 2010 | Proceedings - 2010 2nd World Congress on Nature and Biologically Inspired Computing, NaBIC 2010, pp. 13-18, 5716309 | 35 |
7 | Artificial bee colony approach for enhancing LSB based image steganography | Banharnsakun A. | 2018 | Multimedia Tools and Applications, 77(20), pp. 27491-27504 | 33 |
8 | Reducing bioinformatics data dimension with ABC-kNN | Prasartvit T., Banharnsakun A., Kaewkamnerdpong B., Achalakul T. | 2013 | Neurocomputing, 116, pp. 367-381 | 32 |
9 | Object detection based on template matching through use of best-so-far ABC | Banharnsakun A., Tanathong S. | 2014 | Computational Intelligence and Neuroscience, 2014, 919406 | 28 |
10 | The best-so-far ABC with multiple patrilines for clustering problems | Banharnsakun A., Sirinaovakul B., Achalakul T. | 2013 | Neurocomputing, 116, pp. 355-366 | 26 |
11 | ABC-GSX: A hybrid method for solving the traveling salesman problem | Banharnsakun A., Achalakul T., Sirinaovakul B. | 2010 | Proceedings - 2010 2nd World Congress on Nature and Biologically Inspired Computing, NaBIC 2010, pp. 7-12, 5716308 | 25 |
12 | Artificial bee colony algorithm for enhancing image edge detection | Banharnsakun A. | 2019 | Evolving Systems, 10(4), pp. 679-687 | 22 |
13 | Multi-focus image fusion using best-so-far ABC strategies | Banharnsakun A. | 2019 | Neural Computing and Applications, 31(7), pp. 2025-2040 | 17 |
14 | Target finding and obstacle avoidance algorithm for microrobot swarms | Banharnsakun A., Achalakul T., Batra R. | 2012 | Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 1610-1615, 6377967 | 16 |
15 | Artificial bee colony algorithm for content-based image retrieval | Banharnsakun A. | 2020 | Computational Intelligence, 36(1), pp. 351-367 | 15 |
16 | Feature point matching based on ABC-NCC algorithm | Banharnsakun A. | 2018 | Evolving Systems, 9(1), pp. 71-80 | 12 |
17 | Multiple traffic sign detection based on the artificial bee colony method | Banharnsakun A. | 2018 | Evolving Systems, 9(3), pp. 255-264 | 9 |
18 | A new approach for solving the minimum vertex cover problem using artificial bee colony algorithm | Banharnsakun A. | 2023 | Decision Analytics Journal, 6, 100175 | 7 |
19 | Drug Delivery Based on Swarm Microrobots | Banharnsakun A., Achalakul T., Batra R. | 2016 | International Journal of Computational Intelligence and Applications, 15(2), 1650006 | 7 |
20 | A hierarchical clustering of features approach for vehicle tracking in traffic environments | Banharnsakun A., Tanathong S. | 2016 | International Journal of Intelligent Computing and Cybernetics, 9(4), pp. 354-368 | 5 |
21 | Artificial Bee Colony Algorithm for Solving the Knight’s Tour Problem | Banharnsakun A. | 2019 | Advances in Intelligent Systems and Computing, 866, pp. 129-138 | 5 |
22 | The performance and sensitivity of the parameters setting on the best-so-far ABC | Banharnsakun A., Sirinaovakul B., Achalakul T. | 2012 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7673 LNCS, pp. 248-257 | 4 |
23 | Multiple object tracking based on a hierarchical clustering of features approach | Tanathong S., Banharnsakun A. | 2014 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8397 LNAI(PART 1), pp. 522-529 | 1 |
24 | Low-Light Image Enhancement with Artificial Bee Colony Method | Banharnsakun A. | 2022 | Lecture Notes in Networks and Systems, 371, pp. 3-13 | 0 |
25 | Aerial Image Denoising Using a Best-So-Far ABC-based Adaptive Filter Method | Banharnsakun A. | 2022 | International Journal of Computational Intelligence and Applications, 21(4), 2250024 | 0 |
26 | Machine learning techniques for supporting dog grooming services | Pannurat N., Eiamsaard K., Suthanma C., Banharnsakun A., Banharnsakun A. | 2023 | Results in Control and Optimization, 12, 100273 | 0 |
27 | Applying the ABC Approach for Edge Detection in Unshelled Banana Prawn Images | Supeesun A., Supeesun A., Eiamsaard K., Banharnsakun A., Banharnsakun A. | 2024 | Proceedings - 21st International Joint Conference on Computer Science and Software Engineering, JCSSE 2024, pp. 113-117 | 0 |