# | Document title | Authors | Year | Source | Cited by |
1 | Comparison of four data transformation methods for weibull distributed data | Chortirat T., Chomtee B., Sinsomboonthong J. | 2011 | Kasetsart Journal - Natural Science 45(2),pp. 366-383 | 3 |
2 | Confidence interval estimations of the parameter for one parameter exponential distribution | Sinsomboonthong J. | 2015 | IAENG International Journal of Applied Mathematics 45(4),pp. 343-353 | 3 |
3 | Estimation of the correlation coefficient for a bivariate normal distribution with missing data | Sinsomboonthong J. | 2011 | Kasetsart Journal - Natural Science 45(4),pp. 736-742 | 2 |
4 | Bias correction in estimation of the population correlation coefficient | Sinsomboonthong J. | 2013 | Kasetsart Journal - Natural Science 47(3),pp. 453-459 | 2 |
5 | Krawtchouk's polynomial for hypergeometric distribution approximation | Sinsomboonthong J. | 2014 | Kasetsart Journal - Natural Science 48(2),pp. 301-312 | 0 |
6 | Robust estimators for the correlation measure to resist outliers in data | Sinsomboonthong J. | 2016 | Journal of Mathematical and Fundamental Sciences 48(3),pp. 263-275 | 0 |
7 | A confidence interval for the population mean of a one-parameter exponential distribution based on the Wilson-Hilferty transformation | Abu-Shawiesh M.O.A., Sinsomboonthong J. | 2020 | Model Assisted Statistics and Applications 15(1),pp. 67-79 | 0 |
8 | Confidence intervals for the scale parameter of a two-parameter weibull distribution: One sample problem | Abu-Shawiesh M.O.A., Sinsomboonthong J., Adawi A.M.A., Almomani M.H. | 2020 | International Journal of Applied Mathematics 33(3),pp. 451-478 | 0 |
9 | Performance of robust confidence intervals for estimating population mean under both non-normality and in presence of outliers | Sinsomboonthong J., Abu-Shawiesh M.O.A., Kibria B.M.G. | 2020 | Advances in Science, Technology and Engineering Systems 5(3),pp. 442-449 | 0 |