# | Document title | Authors | Year | Source | Cited by |
1 | Machine learning and statistical analysis for biomass torrefaction: A review | Manatura K., Chalermsinsuwan B., Kaewtrakulchai N., Kwon E.E., Chen W.H., Chen W.H., Chen W.H. | 2023 | Bioresource Technology, 369, 128504 | 43 |
2 | Palm oil conversion to bio-jet and green diesel fuels over cobalt phosphide on porous carbons derived from palm male flowers | Kaewtrakulchai N., Kaewtrakulchai N., Kaewmeesri R., Kaewmeesri R., Itthibenchapong V., Eiad-Ua A., Faungnawakij K. | 2020 | Catalysts, 10(6), pp. 1-18, 694 | 31 |
3 | Parametric study on microwave-assisted pyrolysis combined KOH activation of oil palm male flowers derived nanoporous carbons | Kaewtrakulchai N., Kaewtrakulchai N., Faungnawakij K., Eiad-Ua A. | 2020 | Materials, 13(12), 2876 | 20 |
4 | High performance nanoporous carbon from mulberry leaves (Morus alba L.) residues via microwave treatment assisted hydrothermal-carbonization for methyl orange adsorption: Kinetic, equilibrium and thermodynamic studies | Siraorarnroj S., Kaewtrakulchai N., Fuji M., Eiad-ua A. | 2022 | Materialia, 21, 101288 | 18 |
5 | Co-torrefaction of rice straw and waste medium density fiberboard: A process optimization study using response surface methodology | Manatura K., Chalermsinsuwan B., Kaewtrakulchai N., Chao Y.C., Li Y.H. | 2023 | Results in Engineering, 18, 101139 | 17 |
6 | Nanoporous Carbon from Oil Palm Leaves via Hydrothermal Carbonization-Combined KOH Activation for Paraquat Removal | Chanpee S., Kaewtrakulchai N., Khemasiri N., Eiad-Ua A., Assawasaengrat P. | 2022 | Molecules (Basel, Switzerland), 27(16), 5309 | 16 |
7 | Porous Biochar Supported Transition Metal Phosphide Catalysts for Hydrocracking of Palm Oil to Bio-Jet Fuel | Kaewtrakulchai N., Kaewtrakulchai N., Smuthkochorn A., Manatura K., Panomsuwan G., Fuji M., Eiad-Ua A. | 2022 | Materials, 15(19), 6584 | 16 |
8 | Synergy of functionalized activated carbon and ZnO nanoparticles for enhancing photocatalytic degradation of methylene blue and carbaryl | Rungsawang T., Krobthong S., Paengpan K., Kaewtrakulchai N., Manatura K., Eiad-Ua A., Boonruang C., Wongrerkdee S. | 2024 | Radiation Physics and Chemistry, 111924 | 13 |
9 | Co-hydrothermal carbonization of polystyrene waste and maize stover combined with KOH activation to develop nanoporous carbon as catalyst support for catalytic hydrotreating of palm oil | Kaewtrakulchai N., Chanpee S., Jadsadajerm S., Wongrerkdee S., Manatura K., Eiad-Ua A. | 2024 | Carbon Resources Conversion, 7(4), 100231 | 12 |
10 | Sustainable Development of ZnO Nanostructure Doping with Water Hyacinth-Derived Activated Carbon for Visible-Light Photocatalysis | Krobthong S., Rungsawang T., Khaodara N., Kaewtrakulchai N., Manatura K., Sukiam K., Wathinputthiporn D., Wongrerkdee S., Boonruang C., Wongrerkdee S. | 2024 | Toxics, 12(3), 165 | 11 |
11 | Cattail leaf-derived nitrogen-doped carbons via hydrothermal ammonia treatment for electrocatalytic oxygen reduction in an alkaline electrolyte | Panomsuwan G., Eiad-ua A., Kaewtrakulchai N., Seizawa A., Ishizaki T. | 2022 | International Journal of Hydrogen Energy | 11 |
12 | Catalytic deoxygenation of palm oil over metal phosphides supported on palm fiber waste derived activated biochar for producing green diesel fuel | Kaewtrakulchai N., Kaewtrakulchai N., Fuji M., Eiad-Ua A. | 2022 | RSC Advances, 12(40), pp. 26051-26069 | 9 |
13 | Hydrophobicity and performance analysis of beverage and agricultural waste torrefaction for high-grade bio-circular solid fuel | Kaewtrakulchai N., Wongrerkdee S., Chalermsinsuwan B., Samsalee N., Huang C.W., Manatura K. | 2024 | Carbon Resources Conversion, 100243 | 9 |
14 | Valorization of horse manure conversion to magnetic carbon nanofiber for dye adsorption by hydrothermal treatment coupled with carbonization | Kaewtrakulchai N., Chanpee S., Pasee W., Putta A., Chutipaijit S., Kaewpanha M., Suriwong T., Puengjinda P., Panomsuwan G., Fuji M., Eiad-ua A. | 2024 | Case Studies in Chemical and Environmental Engineering, 9, 100563 | 7 |
15 | Magnetic Carbon Nanofibers from Horse Manure via Hydrothermal Carbonization for Methylene Blue Adsorption | Kaewtrakulchai N., Putta A., Pasee W., Fuangnawakij K., Panomsuwan G., Eiad-Ua A. | 2019 | IOP Conference Series: Materials Science and Engineering, 540(1), 012006 | 7 |
16 | Upgrading of Corn Stalk Residue and Tannery Waste into Sustainable Solid Biofuel via Conventional Hydrothermal Carbonization and Co-Hydrothermal Carbonization | Kaewtrakulchai N., Chanpee S., Manatura K., Eiad-Ua A. | 2023 | Journal of Sustainability Research, 5(3), e230012 | 5 |
17 | Nitrogen-doped carbon derived from horse manure biomass as a catalyst for the oxygen reduction reaction | Panomsuwan G., Hussakan C., Kaewtrakulchai N., Techapiesancharoenkij R., Serizawa A., Ishizaki T., Eiad-Ua A. | 2022 | RSC Advances, 12(27), pp. 17481-17489 | 5 |
18 | Torrefaction of durian peel in air and N2 atmospheres: Impact on chemical properties and optimization of energy yield using multilevel factorial design | Pimsamarn J., Kaewtrakulchai N., Wisetsai A., Mualchontham J., Muidaeng N., Jiraphothikul P., Autthanit C., Eiad-Ua A., Laosiripojana N., Jadsadajerm S. | 2024 | Results in Engineering, 23, 102767 | 5 |
19 | A novel photocatalyst of Y2O3-BaO-ZnO ternary system for enhanced photocatalytic degradation of carbofuran insecticide | Sujinnapram S., Krobthong S., Moungsrijun S., Boonruang C., Kaewtrakulchai N., Eiad-Ua A., Manatura K., Wongrerkdee S. | 2024 | Materials Today Communications, 40, 109501 | 5 |
20 | Influence of hydrothermal and calcination process on metakaolin from natural clay | Srilai S., Kaewtrakulchai N., Panomsuwan G., Fuji M., Eiad-Ua A. | 2018 | AIP Conference Proceedings, 2010, 020018 | 4 |
21 | Effects of transition metal during the hydrothermal carbonization on characteristics of carbon materials | Sangjumras P., Udomsap P., Udomsap P., Kaewtrakulchai N., Eiad-Ua A., Fuji M., Chutipaijit S. | 2018 | AIP Conference Proceedings, 2010, 020014 | 4 |
22 | Characterization of carbon fibers from Thai horse manure via hydrothermal carbonization | Wettayavong S., Sangnoi S., Kaewtrakulchai N., Eiad-Ua A. | 2018 | Materials Today: Proceedings, 5(5), pp. 10940-10945 | 4 |
23 | Dependence of MWCNT production via co-pyrolysis of industrial slop oil and ferrocene on growth temperature and heating rate | Chaiwat W., Kaewtrakulchai N., Sangsiri P., Eiad-ua A., Wongwiriyapan W., Viriya-empikul N., Suttiponpanit K., Charinpanitkul T., Charinpanitkul T. | 2020 | Journal of Analytical and Applied Pyrolysis, 150, 104878 | 3 |
24 | Synthesis of carbon nanofiber from horse manure via hydrothermal carbonization for dye adsorption | Pasee W., Puta A., Sangnoi S., Wettayavong S., Kaewtrakulchai N., Panomsuwan G., Eiad-Ua A. | 2019 | Materials Today: Proceedings, 17, pp. 1326-1331 | 3 |
25 | Nanoporous carbon from Cattial leaves for carbon dioxide capture | Smuthkochorn A., Katunyoo N., Kaewtrakulchai N., Atong D., Soongprasit K., Eiad-Ua A. | 2019 | Materials Today: Proceedings, 17, pp. 1240-1248 | 3 |
26 | Parametric study on mechanical-press torrefaction of palm oil empty fruit bunch for production of biochar | Kaewtrakulchai N., Wisetsai A., Phongaksorn M., Thipydet C., Jongsomjit B., Laosiripojana N., Worasuwannarak N., Pimsamarn J., Jadsadajerm S. | 2024 | Carbon Resources Conversion, 100285 | 3 |
27 | Optimization of torrefaction parameters for coconut shell using Taguchi method: Impact on torrefaction performances, combustion characteristics, and thermal stability | Manatura K., Samsalee N., Kaewtrakulchai N., Jadsadajerm S., Muangklang E., Jaruwongwittaya T., Huang C.W. | 2025 | Thermal Science and Engineering Progress, 57, 103137 | 2 |
28 | Solid shrimp waste derived nanoporous carbon as an alternative bio-sorbent for oxytetracycline removal from aquaculture wastewater | Kaewtrakulchai N., Samattakarn N., Chanpee S., Assawasaengrat P., Manatura K., Wongrerkdee S., Eiad-Ua A. | 2024 | Heliyon, 10(11), e32427 | 2 |
29 | Corrigendum to “A novel photocatalyst of Y2O3-BaO-ZnO ternary system for enhanced photocatalytic degradation of carbofuran insecticide” [Mater. Today Commun. 40 (2024) 109501] (Materials Today Communications (2024) 40, (S235249282401482X), (10.1016/j.mtcomm.2024.109501)) | Sujinnapram S., Krobthong S., Moungsrijun S., Boonruang C., Kaewtrakulchai N., Eiad-Ua A., Manatura K., Wongrerkdee S. | 2024 | Materials Today Communications, 109666 | 2 |
30 | Characterization of activated biochar prepared from pineapple waste for metal catalyst support | Kaewtrakulchai N., Rousset P., Eiad-Ua A. | 2019 | Suranaree Journal of Science and Technology, 26(1), pp. 23-30 | 2 |
31 | Synthesis of porous carbon materials from water hyacinth via hydrothermal carbonization assisted chemical activation for carbon-based electrode applications | Liamprawat T., Verasarut P., Kaewtrakulchai N., Panomsuwan G., Chutipaijit S., Puengjinda P., Fuji M., Eiad-Ua A. | 2020 | AIP Conference Proceedings, 2279, 130004 | 2 |
32 | Cattail (Typha angustifolia) flower-derived porous carbons as support of electroplated Ni and Cu catalysts for hydrogenation of methyl levulinate to γ-valerolactone | Kaewtrakulchai N., Kaewtrakulchai N., Gunpum W., Fuji M., Eiad-Ua A. | 2021 | Biomass Conversion and Biorefinery | 2 |
33 | Synthesis of nanoporous material from lignin via carbonization assisted acid activation | Ngamthanacom N., Kaewtrakulchai N., Chaiwat W., Chuenchom L., Fuji M., Eiad-Ua A. | 2020 | Materials Science Forum, 990 MSF, pp. 149-154 | 2 |
34 | Bimetallic PdNi catalyst on cattail Leaves-Derived nanoporous carbon support for synthesis of partially hydrogenated fatty acid methyl ester (H-FAME) | Longprang T., Kaewtrakulchai N., Kiatkittipong W., Srifa A., Chollacoop N., Eiad-Ua A., Assabumrungrat S. | 2024 | Arabian Journal of Chemistry, 17(6), 105800 | 2 |
35 | Preparation of Activated Carbon from Various Biomasses by Single-Stage Pyrolysis | Thowphan S., Kaewtrakulchai N., Jaruvanawat A., Chutipaijit S., Puengjinda P., Chollacoop N., Fuji M., Eiad-Ua A. | 2022 | Journal of Physics: Conference Series, 2175(1), 012009 | 1 |
36 | Alternate catalyst support from microwave-assisted activation of coconut tree fiber | Kaewtrakulchai N., Faungnawakij K., Eiad-Ua A. | 2020 | Key Engineering Materials, 853 KEM, pp. 223-227 | 1 |
37 | Highly porous carbon materials for adsorbent from water hyacinth via hydrothermal carbonization | Chanpee S., Suksai N., Kaewtrakulchai N., Chutipaijit S., Fuji M., Eiad-Ua A. | 2020 | AIP Conference Proceedings, 2279, 130003 | 1 |
38 | N-doped Porous Carbon from Palm Male Flower via Hydrothermal Carbonization | Verasarut P., Liamprawat T., Kaewtrakulchai N., Chutipaijit S., Panomsuwan G., Puengjinda P., Fuji M., Eiad-Ua A. | 2020 | IOP Conference Series: Materials Science and Engineering, 894(1), 012008 | 1 |
39 | Catalytic Deoxygenation of Palm Oil Over Iron Phosphide Supported on Nanoporous Carbon Derived from Vinasse Waste for Green Diesel Production | Nenyoo P., Wongsurakul P., Kiatkittipong W., Kaewtrakulchai N., Srifa A., Eiad-Ua A., Assabumrungrat S. | 2024 | ACS Omega | 1 |
40 | Nanoporous Carbon-Supported Bimetallic (Ni, Cu, and Fe)-Mo Catalysts for Partial Hydrogenation of Biodiesel | Jaruwat D., Kaewtrakulchai N., Siriorarnroj S., Srifa A., Kiatkittipong W., Charojrochkul S., Fuji M., Eiad-Ua A., Assabumrungrat S. | 2024 | ACS Omega | 0 |
41 | Activated Carbon Films from Water Hyacinth Waste for Stable and Sustainable Counter-Electrode Application in Dye-Sensitized Solar Cells | Kamanja R., Wongrerkdee S., Rungsawang T., Wongrerkdee S., Krobthong S., Pimpang P., Kaewtrakulchai N., Manatura K. | 2025 | Indonesian Journal of Science and Technology, 10(1), pp. 133-144 | 0 |
42 | NiO-YSZ anode composite material derived from mechano-chemical for solid oxide fuel cells application | Srisuwan T., Puengjinda P., Kaewtrakulchai N., Chanpee S., Jadsadajerm S., Panomsuwan G., Ruttanadech N., Wongrekdee S., Chollacoop N., Faungnawakij K., Fuji M., Eiad-ua A. | 2025 | Case Studies in Chemical and Environmental Engineering, 11, 101199 | 0 |
43 | Horse manure derived nitrogen-doped porous carbon via hydrothermal carbonization for promising applications | Liamprawat T., Verasarut P., Kaewtrakulchai N., Panomsuwan G., Fuji M., Eiad-Ua A. | 2020 | Materials Science Forum, 990 MSF, pp. 155-160 | 0 |
44 | Influence of chemical activation on synthesis of carbon nanoparticles via carbonization from lignin | Ngamthanacom N., Kaewtrakulchai N., Chaiwat W., Chuenchom L., Fuji M., Eiad-Ua A. | 2020 | AIP Conference Proceedings, 2279, 030003 | 0 |
45 | Influence of hydrothermal-carbonization process on biochar properties from cattail weed waste | Smuthkochorn A., Katunyoo N., Kaewtrakulchai N., Atong D., Soongprasit K., Fuji M., Eiad-Ua A. | 2019 | Current Applied Science and Technology, 19(1), pp. 9-17 | 0 |
46 | Influence of acid-treatment on waste lignin for synthesis of carbon nanoparticles | Ngamthanacom N., Kaewtrakulchai N., Chaiwat W., Chuenchom L., Fuji M., Eiad-Ua A. | 2019 | Key Engineering Materials, 824 KEM, pp. 1-7 | 0 |
47 | Nanoporous Carbon from Water Hyacinth Via Hydrothermal Carbonization | Chanpee S., Suksai N., Kaewtrakulchai N., Chutipaijit S., Fuji M., Eiad-Ua A. | 2020 | IOP Conference Series: Materials Science and Engineering, 894(1), 012007 | 0 |
48 | Nanoporous Carbon from Water Hyacinth via Hydrothermal Carbonization assisted Chemical Activation for Dye adsorption | Sukulbrahman M., Siraorarnroj S., Suksai N., Kaewtrakulchai N., Chutipaijit S., Chanpee S., Puengjinda P., Fuji M., Eiad-Ua A., Klomklao S., Jaruvanawat A. | 2022 | Current Applied Science and Technology, 22(4) | 0 |
49 | Oil palm leaf-derived nanoporous carbon via hydrothermal carbonization combined with NaOH microwave activation for tetracycline adsorption | Chanpee S., Apinyakul N., Kaewtrakulchai N., Khemasiri N., Eiad-ua A., Assawasaengrat P. | 2024 | Biomass Conversion and Biorefinery | 0 |
50 | Synthesis of nanoporous carbon from brewer waste by hydrothermal carbonization assisted chemical activation for carbamazepine adsorption | Apinyakul N., Chanpee S., Kaewtrakulchai N., Khemasiri N., Eiad-ua A., Assawasaengrat P. | 2024 | Case Studies in Chemical and Environmental Engineering, 9, 100716 | 0 |