# | Document title | Authors | Year | Source | Cited by |
1 | Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals | Charoenchaitrakool M., Dehghani F., Foster N., Chan H. | 2000 | Industrial and Engineering Chemistry Research 39(12),pp. 4794-4802 | 254 |
2 | Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-β-cyclodextrin | Charoenchaitrakool M., Dehghani F., Foster N. | 2002 | International Journal of Pharmaceutics 239(1-2),pp. 103-112 | 129 |
3 | Texture Modification Technologies and Their Opportunities for the Production of Dysphagia Foods: A Review | Sungsinchai S., Niamnuy C., Wattanapan P., Charoenchaitrakool M., Devahastin S., Devahastin S. | 2019 | Comprehensive Reviews in Food Science and Food Safety 18(6),pp. 1898-1912 | 104 |
4 | Statistical optimization for biodiesel production from waste frying oil through two-step catalyzed process | Charoenchaitrakool M., Thienmethangkoon J. | 2011 | Fuel Processing Technology 92(1),pp. 112-118 | 103 |
5 | Particle formation of ibuprofen-supercritical CO2 system from rapid expansion of supercritical solutions (RESS): A mathematical model | Hirunsit P., Huang Z., Srinophakun T., Charoenchaitrakool M., Kawi S. | 2005 | Powder Technology 154(2-3),pp. 83-94 | 73 |
6 | Bioactive Compounds and Bioactivities of Centella asiatica (L.) Urban Prepared by Different Drying Methods and Conditions | Niamnuy C., Charoenchaitrakool M., Mayachiew P., Devahastin S. | 2013 | Drying Technology 31(16),pp. 2007-2015 | 52 |
7 | Application of dense gas techniques for the production of fine particles | Foster N.R., Dehghani F., Charoenchaitrakool K.M., Warwick B. | 2003 | AAPS PharmSci 5(2) | 39 |
8 | Processing of ketoconazole-4-aminobenzoic acid cocrystals using dense CO2 as an antisolvent | Kotbantao G., Charoenchaitrakool M. | 2017 | Journal of CO2 Utilization 17,pp. 213-219 | 34 |
9 | Application of Box-Behnken design for processing of mefenamic acid-paracetamol cocrystals using gas anti-solvent (GAS) process | Wichianphong N., Charoenchaitrakool M. | 2018 | Journal of CO2 Utilization 26,pp. 212-220 | 31 |
10 | Gas anti-solvent processing of a new sulfamethoxazole-l-malic acid cocrystal | Imchalee R., Charoenchaitrakool M. | 2015 | Journal of Industrial and Engineering Chemistry 25,pp. 12-15 | 27 |
11 | Statistical optimization for production of mefenamic acid–nicotinamide cocrystals using gas anti-solvent (GAS) process | Wichianphong N., Charoenchaitrakool M. | 2018 | Journal of Industrial and Engineering Chemistry 62,pp. 375-382 | 26 |
12 | Application of gas anti-solvent process to the recovery of andrographolide from Andrographis paniculatanees | Charoenchaitrakool M., Trisilanun W., Srinopakhun P. | 2010 | Korean Journal of Chemical Engineering 27(3),pp. 950-954 | 15 |
13 | Dissolution rate enhancement of sulfamethoxazole using the gas anti-solvent (GAS) process | Phothipanyakun S., Suttikornchai S., Charoenchaitrakool M. | 2013 | Powder Technology 250,pp. 84-90 | 14 |
14 | Co-precipitation of mefenamic acid-polyvinylpyrrolidone K30 composites using Gas Anti-Solvent | Dittanet P., Phothipanyakun S., Charoenchaitrakool M. | 2016 | Journal of the Taiwan Institute of Chemical Engineers 63,pp. 17-24 | 12 |
15 | Production of PLA/cellulose derived from pineapple leaves as bio-degradable mulch film | Sukwijit C., Seubsai A., Charoenchaitrakool M., Sudsakorn K., Niamnuy C., Roddecha S., Prapainainar P. | 2024 | International Journal of Biological Macromolecules 270 | 10 |
16 | Production of theophylline and polyethylene glycol 4000 composites using Gas Anti-Solvent (GAS) process | Charoenchaitrakool M., Polchiangdee C., Srinophakun P. | 2009 | Materials Letters 63(1),pp. 136-138 | 9 |
17 | Fe2O3-decorated hollow porous silica spheres assisted by waste gelatin template for efficient purification of synthetic wastewater containing As(V) | Numpilai T., Donphai W., Du Z., Cheng C.K., Charoenchaitrakool M., Chareonpanich M., Witoon T. | 2022 | Chemosphere 308 | 8 |
18 | Spray drying of non-chemically prepared nanofibrillated cellulose: Improving water redispersibility of the dried product | Sungsinchai S., Niamnuy C., Wattanapan P., Wattanapan P., Charoenchaitrakool M., Devahastin S., Devahastin S. | 2022 | International Journal of Biological Macromolecules 207,pp. 434-442 | 7 |
19 | Statistical optimization for precipitation of bioactive compounds from extracted Centella asiatica using gas anti-solvent technique | Charoenchaitrakool M., Niamnuy C., Dittanet P., Chantes O., Chuangyang P. | 2020 | Journal of Food Process Engineering 43(2) | 7 |
20 | Co-precipitation of mefenamic acid and polyethylene glycol 4000 using the Gas anti-solvent (GAS) process | Charoenchaitrakool M., Suttikornchai S., Songjitsomboon T. | 2013 | Chiang Mai Journal of Science 40(3),pp. 440-446 | 5 |
21 | Processing of a novel mefenamic acid-paracetamol-nicotinamide cocrystal using gas anti-solvent process | Charoenchaitrakool M., Roubroum T., Sudsakorn K. | 2022 | Journal of CO2 Utilization 62 | 4 |
22 | Facile Synthesis of Glycerol Carbonate Using Green Catalysts Derived from Pineapple Peels | Topool B., Charoenchaitrakool M., Sudsakorn K. | 2023 | Topics in Catalysis
| 3 |
23 | Synthesis and Characterization of Environmentally Friendly β-Cyclodextrin Cross-Linked Cellulose/Poly(vinyl alcohol) Hydrogels for Adsorption of Malathion | Thongrueng M., Sudsakorn K., Charoenchaitrakool M., Seubsai A., Panchan N., Devahastin S., Devahastin S., Niamnuy C. | 2024 | ACS Omega
| 2 |
24 | Efficient Cellulose/Nano-silver Composite Sheet Derived from Pineapple Leaves for Hydrogen Sulfide Detection | Thongboon S., Muenchanama C., Chanthanumatt R., Charoenchaitrakool M., Sudsakorn K., Prapainainar P., Roddecha S., Chareonpanich M., Faungnawakij K., Seubsai A. | 2023 | ChemNanoMat
| 1 |
25 | Carboxymethyl cellulose and gelatin composite hydrogel for environmentally friendly urea delivery | Charoenchaitrakool M., Tulathon P., Meesangnil W., Niamnuy C., Seubsai A., Nunta S., Sudsakorn K. | 2024 | Colloids and Surfaces A: Physicochemical and Engineering Aspects 690 | 1 |
26 | Application of dense gas techniques for the production of fine particles | Foster N.R., Dehghani F., Charoenchaitrakool K.M., Warwick B. | 2003 | AAPS Journal 5(2) | 1 |
27 | Cleaning of lubricant-oil-contaminated plastic using liquid carbon dioxide | Charoenchaitrakool M., Tungkasatan S., Vatanatham T., Limtrakul S. | 2016 | Journal of Industrial and Engineering Chemistry 34,pp. 313-320 | 1 |
28 | Precipitation of bioactive ingredients from extracted Centella asiatica via gas anti-solvent technique | Charoenchaitrakool M., Chantes O. | 2018 | Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering
| 0 |
29 | Development of nano-nickel catalyst by using supercritical CO2 for methane cracking | Charoenchaitrakool M., Chareonpanich M., Saithongsuk P. | 2017 | Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering
| 0 |
30 | Statistical optimization for biodiesel production from Jatropha curcas oil using two-step catalyzed process | Charoenchaitrakool M., Thamvijit T. | 2010 | 19th International Congress of Chemical and Process Engineering, CHISA 2010 and 7th European Congress of Chemical Engineering, ECCE-7
| 0 |
31 | Improved dissolution of ketoconazole by coprecipitation with nicotinamide using gas anti-solvent process | Juengwongsa C., Charoenchaitrakool M., Charoenthai N., Puttipipatkhachorn S. | 2024 | Pharmaceutical Sciences Asia 51(2),pp. 94-105 | 0 |
32 | Optimizing the Precipitation of Bioactive Compounds From Extracted Curcuma longa Linn. Using Gas Anti-Solvent Process | Charoenchaitrakool M., Lengmangmee C., Youngkum P. | 2024 | Journal of Food Process Engineering 47(11) | 0 |
33 | The Great Versatility of Supercritical Fluids in Industrial Processes: A Focus on Chemical, Agri-Food and Energy Applications | Kamjam M., Ngamprasertsith S., Sawangkeaw R., Charoenchaitrakool M., Privat R., Jaubert J.N., Molière M., Molière M. | 2024 | Processes 12(11) | 0 |
34 | Sustainable development of hybrid aerogels from surplus gelatin and chitosan for enhancing the dissolution rate of clotrimazole | Charoenchaitrakool M., Youngkum P., Sudsakorn K., Niamnuy C., Prapainainar P., Kaewmanee S. | 2025 | Polymer Engineering and Science
| 0 |